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1 Introduction

In recent years, the field of computer animation has witnessed the invention of multiple simulation methods that
exploit pre-recorded data to improve the performance and/or realism of dynamic deformations. Various methods
have been presented concurrently, and they present differences, but also similarities, that have not yet been analyzed
or discussed. This course focuses on the application of data-driven methods to three areas of computer animation,
namely dynamic deformation of faces, soft volumetric tissue, and cloth. The course describes the particular chal-
lenges tackled in a data-driven manner, classifies the various methods, and also shares insights for the application to
other settings.

The explosion of data-driven animation methods and the success of their results make this course extremely timely.
Up till now, the proposed methods have remained familiar only at the research context, and have not made their
way through computer graphics industry. This course aims to fit two main purposes. First, present a common
theory and understanding of data-driven methods for dynamic deformations that may inspire the development of
novel solutions, and second, bridge the gap with industry, by making data-driven approaches accessible. The course
targets an audience consisting of both researchers and programmers in computer animation.

1.1 Course Structure

Current data-driven methods for dynamic deformation exploit pre-recorded data in one of two ways. Some methods
build on traditional mechanical models to simulate deformations of soft tissue [Pai et al. 2001; Lang et al. 2002;
Schoner et al. 2004; Schnur and Zabaras 1992; Becker and Teschner 2007; Kauer et al. 2002; Kajberg and Lindkvist
2004; Bickel et al. 2009; Bickel et al. 2010] or cloth [Breen et al. 1994; Eberhardt et al. 1996; Volino et al. 2009;
Bhat et al. 2003; Kunitomo et al. 2010; Wang et al. 2011; Miguel et al. 2012], but parameterize those models in a
versatile fashion by interpolation of parameter values estimated from real deformation examples. Other methods, on
the other hand, interpolate geometric information on cloth [Wang et al. 2010; de Aguiar et al. 2010; Feng et al. 2010;
Kavan et al. 2011; Zurdo et al. 2012] or faces [Bickel et al. 2008; Ma et al. 2008b], and define the information, the
interpolation domains, and the interpolation functions, from pre-recorded data. To properly describe each method
and facilitate the discussion of differences and similarities, the course starts with an overview and classification of
the main approaches.

Figure 1: Example of data-driven cloth simulation with the method of [Miguel et al. 2012]. From left to right, image
of the real cloth, reconstructed geometry, and simulation result.

Then, the course dwells on the description of methods that rely on mechanical data. The course covers two different
applications of mechanical-data-driven methods. Fig. 1 shows an example of cloth simulation where cloth deforma-
tion models have been estimated from a combination of force-and-deformation information in multiple deformation
examples. A similar strategy is followed in the example in Fig. 2, but this time to estimate solid deformation mod-
els for soft tissue simulation. The material for the course is combined and adapted from recent publications in
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Figure 2: From left to right: force-and-deformation capture of a non-linear heterogeneous pillow; deformation
synthesized with fitted material parameters and the method of [Bickel et al. 2009]; and interactive deformation
under different boundary conditions.

data-driven cloth [Wang et al. 2011; Miguel et al. 2012] and soft-tissue modeling [Bickel et al. 2009; Bickel et al.
2010].

The course also describes animation methods that rely on geometric data. To demonstrate the possibilities of such
methods, we present techniques that target two distant applications: animation of highly detailed human faces and
cloth animation. Fig. 3 shows facial animation examples where expression wrinkles are synthesized in a data-driven
manner. Fig. 4, on the other hand, shows cloth animation examples where folds and wrinkles are synthesized in a
data-driven manner. The material for the course is adapted mostly from recent publications in these fields [Bickel
et al. 2008; Wang et al. 2010], but we also draw connections with other related methods [Ma et al. 2008b; Kavan
et al. 2011], and we discuss the general challenges in defining interpolation functions and domains.

Figure 3: Facial animation example with the method of [Bickel et al. 2008]. From left to right: large-scale defor-
mation example interpolating mocap markers, full result after example-based fine-scale correction, the same result
with full shading, and comparison to the real actor’s face.

One essential component of data-driven simulation methods is data capture, and due to this importance we dedicate
a chapter of the course to this problem. It shares challenges with performance capture, but it suffers additional
challenges too. Unlike traditional performance capture, which aims at obtaining a reconstruction of arbitrary motion,
data capture for data-driven modeling must be designed with the purpose of obtaining a sufficient representation of
an object’s range of deformations. Therefore, one must design deformation examples that visit the desired range of
deformations and suit optimization processes. Moreover, for mechanical-data-driven methods, the capture process
must obtain force information in addition to deformation. The material for the course combines and adapts content



Figure 4: The method of [Wang et al. 2010] uses a precomputed dataset to synthesize cloth wrinkles (a) that are
layered onto a coarse base simulation (inset). The precomputed dataset can be used to synthesize wrinkles for a
wide range of poses (b and c).

from several recent publications [Bradley et al. 2008a; Bradley et al. 2008b; Bradley et al. 2010; Bickel et al. 2009;
Wang et al. 2010; Wang et al. 2011; Miguel et al. 2012].

1.2 Course Schedule

9:00 am Introduction and overview of methods [Otaduy]
9:20 am Tissue and cloth mechanics [Bickel/Otaduy]
9:50 am Capturing deformation examples [Bradley]
10:30 am Break

10:45 am Facial animation [Bickel]

11:25 am Cloth animation [Wang]

12:05 pm Conclusion / Q & A [all]

12:15 pm Close

1.3 Course Notes

The course notes begin with an overview and classification of methods in Chapter 2. Chapter 3 covers solutions for
capturing both deformations and forces in an ample set of applications. Then, Chapters 4, 5, 6, and 7 cover, respec-
tively, methods for mechanical-data-driven simulation of soft tissue, mechanical-data-driven simulation of cloth,
geometric-data-driven simulation of faces, and geometric-data-driven simulation of cloth. The course notes will be
progressively refined, and updated versions will be available on the course web page http://www.gmrv.es/SIG12Course.
The web page also provides links to publications with supplementary material.

1.4 Instructors

Miguel A. Otaduy is an associate professor in the Department of Computer Science at Universidad Rey Juan Carlos
(URJC Madrid). His main research areas are physically based computer animation and haptic rendering. He obtained
his BS (2000) on electrical engineering from Mondragén University, and MS (2003) and PhD (2004) on computer
science from the University of North Carolina at Chapel Hill. From 2005 to 2008 he was a research associate at ETH
Zurich, and then he joined URJC Madrid. He has published over 50 papers in computer graphics and haptics, and
has recently co-chaired the program committees for the ACM SIGGRAPH / Eurographics Symposium on Computer



Animation (2010) and the Spanish Computer Graphics Conference (2010). He also leads the ERC Starting Grant
Animetrics, on measurement-based modeling of complex mechanical phenomena.

Bernd Bickel is a part-time visiting professor at TU Berlin and a post-doctoral researcher at Disney Research Zurich.
His research interests include computer graphics and its applications in animation, biomechanics, material science,
and computational design for digital fabrication. Recent work includes next generation 3D surface scanner devices,
performance capture, measuring and modeling the deformation behavior of soft tissue, and animation tools. Bernd
received a M.Sc. in Computer Science in 2006 and spent nine month at Mitsubishi Electric Research Laboratories
under the supervision of Prof. Hanspeter Pfister. He wrote his PhD thesis at ETH Zurich in the Computer Graphics
Lab headed by Prof. Markus Gross and defended in November 2010.

Derek Bradley is a postdoctoral researcher at Disney Research Zurich. He completed his Bachelor of Computer
Science in 2003 and Master of Computer Science in 2005, both at Carleton University in Canada. In 2010, Derek
obtained a PhD from the University of British Columbia in Canada, and then started with Disney Research Zurich in
September 2010. Derek’s main research interest is real-world modeling and animation, primarily through computer
vision techniques. He works on various 3D reconstruction projects including multiview stereo, facial performance
capture, and data-driven simulation.

Huamin Wang is an assistant professor in the department of Computer Science and Engineering, at the Ohio State
University. Previously, he was a postdoctoral researcher in the EECS department, at the University of California,
Berkeley. He received his Ph.D. from Georgia Institute of Technology in 2009, M.S. from Stanford University in
2004 and B.Eng. from Zhejiang University in 2002. His research interests are in computer graphics, computer
vision, and image processing techniques that are related to graphics and visualization applications. He is particu-
larly interested in incorporating real-world data into physically based simulation techniques, so animations can be
efficiently and realistically generated.



2 Overview of Data-Driven Simulation Methods

In the interaction with our surrounding world, mechanical properties play a major role in how we perceive this world.
Motion, deformation, flow, fracture or contact, are all mechanical phenomena that allow us to discriminate materials
and objects, and to interact with them. Humans have long strived to understand such mechanical phenomena,
creating simulation models with which we can replicate or predict the outcome of mechanical processes and events.

It is important to acknowledge that the physical models of the major macroscopic mechanical phenomena are already
quite well understood. These models have typically been developed in other disciplines such as physics, mathematics
or various engineering fields, and they have made their way through computer animation accompanied by algorithms
that are geared to obtaining the desired perceptual stimuli, sometimes incurring in a trade-off between physical
realism and interactivity.

Even though the underlying physical models of mechanical phenomena are quite well understood, these phenomena
display other inherent sources of complexity that largely limit the applicability of computer animation. Complexity
is produced, for example, by nonlinear or anisotropic behaviors, by heterogeneous properties, or by a high dynamic
range. These sources of complexity are typically addressed by designing complex nonlinear constitutive models
to describe the mechanical behavior. However, these models are implemented using computationally expensive
simulation algorithms, which largely limit their applicability. Moreover, their parameters are difficult and tedious to
tune, particularly if the properties are heterogeneous. All in all, the animation of complex mechanical phenomena is
limited by the domain of effects captured by the underlying physical models and their parameterization accuracy.

Data-driven methods offer an alternative to complex constitutive models, as they turn the modeling metaphor into
the knowledge of a system’s response under several example conditions. This chapter describes the data-driven
modeling metaphor in the context of computer animation, formulates the mathematics of data-driven modeling
using two example applications, and introduces a classification of the various existing methods.

2.1 Example 1: Data-Driven Facial Wrinkles

Let us consider a face mesh, consisting of vertices with positions x € R3. Vertex positions can be decomposed into
a low-resolution position xg and a fine-scale displacement Ax, expressed in a local reference system for each vertex
(i.e., with orientation R):

x = X9 + R Ax. (D

This definition of vertex positions essentially decomposes large-scale facial deformation (i.e., the overall expression
of the face) from the small-scale deformation (i.e., expressive wrinkles).

If no assumptions are made, the position of each facial vertex can be defined independently as a function of the
facial muscle activations and facial bone configurations. Let us group the muscle and bone configurations in a large
vector u. Moreover, due to dynamics, vertex positions are a function of time too. We can write this dependency
as x = f(u,t). However, due to the repetitive nature of facial expressions, face tissue becomes weaker at certain
locations, and expressive wrinkles appear in a deterministic fashion. Moreover, due the viscoelastic nature of facial
tissue, the motion of expressive wrinkles appears damped to the human eye. Under these conditions, we can draw
the conclusion that fine-scale wrinkle displacements can be defined as a function of some low-dimensional state u*.
We can write this dependency as Ax = f(u*).

At this point, we have ingredients to define a data-driven model. The potentially high dimensional function of vertex
positions has been decomposed into a low-resolution position (inherently low-dimensional), plus a displacement
function that can be defined in some low-dimensional state. The remaining open questions are:

* What low-dimensional state u* describes best the fine-scale displacement?



* Is the data-driven definition of each vertex completely independent, or can we find relationships across vertices
that allow the definition of some global low-dimensional state?

It turns out that, for a vertex, the local strain of the low-resolution face representation serves as a good low-
dimensional state. In other words, the existence of expressive wrinkles is closely related to the local strain of
the surface. There are multiple choices of strain metrics, and the only major condition for the selection of a strain
metric u* is that is should be invariant to rigid body motion. Fig. 5 shows the correlation between wrinkles and
strain defined through edge deformations.

Figure 5: Correlation between expressive wrinkles and local low-resolution strain (measured through edge deforma-
tions). The existence of this correlation enables the definition of a natural low-dimensional domain for interpolating
wrinkle displacement data.

Once a low-dimensional state is selected, the problem is ready for data collection. In our example, the collected data
consists of vertex displacement values {Ax;} and local strain values {u’} in correspondence. This data enables
the approximation of the function f through learning methods. One popular example is scattered-data interpolation
based on radial basis functions. Then, the approximate function f can be formally defined as:

Ax ~ fu' {Axi}, {uf}) = ) wid(u’,uj), @)

where ¢ represents a radial basis function, and the weights w; are estimated as those that fit best the input data

{AXl}

The approach described so far is successful at describing vertex positions in a data-driven manner, but defines the
position of each vertex in a completely independent manner, and may suffer from spatial discontinuities. Ideally, we
seek a solution that ensures spatial continuity (and smoothness). The solution is to impose conditions on the captured
data and the output of the learning stage, to ensure that vertex displacements are defined based on continuous (and
smooth) functions. [Bickel et al. 2008] achieve continuity by building their learning technique as a weighted pose-
space deformation method. Their approach is described in detail in Chapter 6.

From this example, we can draw several important general conclusions. First, there are certain animation settings that
can be modeled efficiently through interpolation of geometric information obtained from representative examples.
Second, to find a function that can be described through interpolation, one often successful approach is to decompose
the geometric representation in a multi-scale fashion. And third, the definition of an effective interpolation domain
can be simplified through the projection of the data to a low-dimensional domain. In the case of expressive wrinkles,
local low-resolution strain constitutes a natural low-dimensional domain.



2.2 Example 2: Data-Driven Soft Tissue

Let us consider a deformable solid discretized with tetrahedra. A vector x concatenates the positions of all nodes
in the solid, and a vector F' concatenates the internal forces (due to elastic deformation) acting on the nodes. Under
linear elasticity theory, the internal forces are simply proportional to the amount of deformation, measured as the
deviation from the rest configuration xg. The linear relationship between deformation and forces is called the
stiffness matrix K, and can be computed using the Finite Element Method. For a homogeneous material, this
stiffness matrix depends solely on the structure of the tetrahedral mesh and two material parameters: Young modulus
(E) and Poisson ratio (). Then, we can formally define the internal forces of the solid as:

F =-K(E,v)(x — x0). 3)

Unfortunately, real materials are nonlinear, and two parameters hardly describe real elastic behavior. The traditional
solution to tackle this problem is to turn to more complex constitutive models, not just linear. However, in a local
neighborhood of a given deformation state, a linear model is typically a good descriptor of the material. The complete
deformation state of the solid can be described by concatenating the strain tensors of all tetrahedra in a large vector u.
Then, the local linear behavior of the material can be defined as a function of the deformation state, [E, v] = f(u).
It turns out that, by describing separately the material parameters of each tetrahedron, the local linear behavior is
well described as a function of the local strain of the tetrahedron itself, which constitutes a considerably lower-
dimensional domain. Then, if we define the strain of just one tetrahedron with a vector u*, the local linear behavior
of that particular tetrahedron can be defined as a function [E, v] = f(u*). Fig. 6 shows two example distributions
of Young modulus under different strains.

Figure 6: The top row shows a deformable pillow under two different external forces. The bottom row compares the
distribution of values of Young modulus that best describe the behavior of the pillow under these two forces.

Now, we have reached the ingredients for a data-driven method. Following Example 1, the collected data should
consist of material parameter values {[E;, 1]} and local strain values {u]} in correspondence. Unfortunately, mate-
rial parameter values are difficult to be directly measured on real solid objects. Instead, we opt to collect measurable
data, in particular external force values {F oy ; } and position values {x;} in correspondence.

If the data is collected under equilibrium conditions, we can relate nodal positions and applied forces through a
quasi-static deformation problem,

x =K(E,v) ! (Fegt + Fotner) + Xo. )



This relationship should hold for all collected pairs of force and deformation data, and this fact will help us estimate
the function f that relates tetrahedral strain to material parameter values. To make the problem specific, and similar
to Example 1, we can define an approximate function f through radial-basis-function interpolation:

B, v] ~ f(u" {[Ei,vi]} {u]}) Zzwmﬁ(u",uﬁ), (5)

But recall that, unlike Example 1, in this case the parameter values {[E;, v;]} are unknown, and the strains {u}
cannot be directly measured either. Instead, the strains {u;} will be sampled to sufficiently cover the range of
strains in the collected data, and, most importantly, the unknowns of the problem, i.e., the weights of the radial
basis functions, w;, will be estimated by solving an optimization problem. The error function for this optimization
problem can be defined as the Euclidean norm between measured positions {x;} and positions estimated using the
data-driven method,

-1 2
€ = Z K (Z Wi ¢(u*, uf)) (Fext,j + Fother) + xq — Xl . (6)
J i

[Bickel et al. 2009] build on a similar data-driven approach to model nonlinear heterogeneous soft tissue, but they
select different material parameters that simplify the optimization problem. Chapter 4 describes their approach in
detail.

From this example, we can draw several important general conclusions. First, there are certain animation settings
where mechanical parameters can be modeled efficiently through data-driven interpolation. In the case of nonlinear
elasticity for soft-tissue deformation, the nonlinear behavior can be modeled through interpolation of local linear
models. However, unlike the previous example, parameter data may not be directly measured from examples, which
brings us to the second conclusion. By collecting force and deformation data from examples, interpolation weights
for the model of mechanical parameters can be estimated through numerical optimization.

2.3 Classification of Methods

To classify data-driven simulation methods in computer animation, we assume that their final output consists of
the (deformed) geometry of simulated objects. Then, this geometry is used in the context of rendering algorithms
to generate synthetic images of the simulated scene. Drawing from the two examples described above, we can
draw a clear classification of data-driven simulation methods into two major categories. One category, represented
by Example 1, models in a data-driven manner the geometry itself. The other category, represented by Example
2, models in a data-driven manner some mechanical parameters, and the geometry is obtained as a result of a
mechanical model.

Then, we distinguish between geometric-data-driven methods and mechanical-data-driven methods. In both cases,
the data collected in examples includes geometric information (i.e., deformation), but in mechanical-data-driven
methods this data should be augmented with force information. Both categories of methods may share techniques for
learning, interpolation, or subspace projection. But in mechanical-data-driven methods, the optimization procedures
for model fitting require objective functions that account for the mechanical process that relates model parameters
to deformation.

Based on our dichotomy of methods, a representative (although not exhaustive) list of data-driven simulation meth-
ods in computer graphics (for cloth, tissue and faces) can be classified as follows:

* Geometric-data-driven methods for cloth [Wang et al. 2010; Feng et al. 2010; Kavan et al. 2011; Zurdo et al.
2012].
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¢ Geometric-data-driven methods for faces [Bickel et al. 2008; Ma et al. 2008b].

* Mechanical-data-driven methods for solid tissue [Pai et al. 2001; Lang et al. 2002; Schoner et al. 2004; Schnur
and Zabaras 1992; Becker and Teschner 2007; Kauer et al. 2002; Kajberg and Lindkvist 2004; Bickel et al.
2009].

¢ Mechanical-data-driven methods for cloth [Breen et al. 1994; Eberhardt et al. 1996; Volino et al. 2009; Bhat
et al. 2003; Kunitomo et al. 2010; Wang et al. 2011; Miguel et al. 2012].
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3 Capturing Geometry and Forces in Real Deformation Examples

In this section we will discuss the process of capturing deformation examples for data-driven simulation. Recently,
many different techniques have emerged for capturing the 3D deformation of real surfaces such as cloth [Scholz et al.
2005; White et al. 2007; Bradley et al. 2008b; Furukawa and Ponce 2008] and faces [Furukawa and Ponce 2009;
Bradley et al. 2010; Beeler et al. 2011]. These methods primarily use vision-based approaches to acquire both the
time-varying shape and corresponding motion of the surface. When capturing deformation examples for simulation
we can make use of these general methods, however recovering only shape and motion is typically not enough. In
the simulation setting, we must also reconstruct the forces that act on the surface and measure the complete answer
that should be predicted by a simulator. This additional challenge often leads to additional capture hardware and
specialized reconstruction algorithms. Another point to consider is that the choice of deformation examples can be
more critical when considering that the reconstructions will be used in a simulation setting. Often we wish to explore
the full range of a material’s strain space, possibly exciting different subsets of strain independently. As an example,
we may wish to separate the weft strain from the warp strain when deforming a piece of cloth, or actuate different
face muscles independently in order to isolate specific facial expressions.

Several recent methods have successfully combined traditional reconstruction algorithms with novel capture tech-
niques for data-driven simulation [Bickel et al. 2009; Wang et al. 2011; Miguel et al. 2012]. These methods form the
main focus of our discussion in this course. Here we will give an overview of the related capture setups and recon-
struction algorithms, starting with the basics of Cameras and Lights (3.1), algorithms for Geometry Reconstruction
(3.2), computing deformation through Temporal Tracking (3.3), obtaining the complete picture of Actuation and
Forces (3.4), and finally concluding with some hints on which Deformation Examples (3.5) might make sense to
capture.

3.1 Cameras and Lights

When designing a capture setup, some thought should go into the choice of cameras to use. The first question is
whether you need video or still cameras, and this is depends on the examples you wish to capture. Wang et al. [2011]
showed that different cloth strains can be isolated in a static way, in which case still cameras such as digital SLRs
are sufficient. Still cameras are often used for capturing isolated facial expressions as well [Beeler et al. 2010]. In
many cases, however, you will want to capture moving surfaces using video cameras.

The choice of video cameras depends less on the capture application and more on budget. Two options are scientific
machine vision cameras or off-the-shelf consumer camcorders. In addition to cost, other factors to consider are
camera synchronization, rolling shutter distortions, and system portability. Fig. 7 outlines the tradeoffs between the
two. The primary benefit of machine vision cameras is that they can be perfectly synchronized using a hardware
trigger. They also provide raw, uncompressed images captured with a global shutter model (i.e. every pixel is
exposed at the exact same time). If budget is not an issue then machine vision cameras are the recommended way to

go.

On a stricter budget, consumer camcorders are evolving as promising alternatives to scientific cameras in many
computer vision applications [Bradley et al. 2008b; Bradley et al. 2010; Atcheson et al. 2008]. They offer high
resolution and guaranteed high frame rates at a significantly reduced cost. Also, integrated hard drives or other
storage media eliminate the need to transfer video sequences in real-time to a computer, making multi-camera
setups more portable. There are two challenges that currently limit the use of such camcorders, especially in multi-
camera and camera array applications. First, consumer camcorders typically do not have support for hardware
synchronization. Second, in contrast to the global shutter model of scientific cameras, most consumer cameras
employ a rolling shutter, in which the individual scanlines use a slightly different temporal offset for the exposure
interval (see, e.g. Wilburn et al. [2004]). An illustration of this camera model is shown in Fig. 8. The resulting frames
represent a sheared slice of the spatio-temporal video volume that cannot be used directly for many computer vision
applications. Bradley et al. [2009] have proposed a solution to the synchronization and rolling shutter problem by

12



* Machine Vision Cameras

+ Hardware synchronized
+ Global shutter

+ No Compression
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- Less portable
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- Rolling-shutter
- Compression

Sony HDR-SR7

Figure 7: Trade-offs between machine vision cameras and consumer camcorders.

capturing under stroboscopic illumination. Strobe lights provide short pulses of illumination, exposing the scene to
all cameras at the same time. Even in the rolling shutter model, this approach will optically synchronize all scanlines
across all cameras. Fig. 9 illustrates this idea and shows experimental results of synchronizing consumer camcorders.
Beeler et al. [2010] also use triggered flashes to synchronize multiple digital SLRs for face reconstruction. The
tradeoff of these techniques is that more sophisticated lighting hardware is required, and capture must occur in a
dimly-lit indoor environment.

A final point on cameras is calibration. Simple white-balancing is often sufficient for radiometric calibration, but
more sophisticated color calibration can also be achieved by photographing a color calibration chart. For geometric
calibration we must determine the intrinsic parameters, which define how the camera forms an image, and a set of
extrinsic parameters, which define the position and orientation of the camera in the world. In most cases, the common
calibration technique of Zhang [1999] will suffice. This method is widely used and an implementation is readily
available in the OpenCV library [ope ]. The basic idea is to capture a number of images of a planar calibration target
with known proportions, and then solve for all the camera parameters such that the reprojection error of the target
is minimized. Some camera setups, such as a hemispherical camera array, require more sophisticated calibration
techniques. We refer to examples such as Beeler et al. [2010] and Bradley and Heidrich [2010].

3.2 Geometry Reconstruction

Reconstructing a deforming surface is often a two-step process. First, the geometry of the surface is acquired,
capturing the changing shape of the surface over time. Second, the motion of the surface is extracted, recovering the
full 3D deformation. This section describes methods for recovering shape.

There exists a large body of computer vision literature on reconstructing shape from images. A good survey can be
found in Seitz et al. [2006]. One approach is to keep things simple, if your simulation environment allows it. Wang

13
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Figure 8: Rolling shutter camera model, with time as the horizontal axis and scanlines as the vertical axis. The blue
region indicates the exposure. Ae is the exposure time, At is the frame duration (one over the frame rate), S is the
total number of scanlines per frame, and t\ ) is the read-out time of the topmost (visible) scanline in frame j. The
Jjust-in-time exposure and readout of the individual scanlines creates a shear along the time axis.
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Figure 9: Stroboscopic lllumination. Top: A flash of light in a dark room exposes all scanlines simultaneously,
removing the rolling shutter distortion. The image is split across two consecutive frames, but can be combined in
a post-process. Bottom: Strobe lighting synchronizes two consumer camcorders observing a falling ball. As a side
effect, motion blur is also removed.

et al. [2011] show that in-plane cloth deformation can be reconstructed in image-space from a single view and a few
labelled feature points (see Fig. 10). More complicated 3D shape recovery typically requires several cameras and

14



multi-view reconstruction algorithms (for example, Fig. 11).

connector

(a) Original photograph (b) Point features (in red) and initialized cloth mesh (a) Final cloth mesh

Figure 10: Reconstructing cloth deformation from a single view and a few labelled feature points. The resulting
cloth mesh is overlaid on the image for comparison.

Figure 11: Multi-view cloth reconstruction based on the technique of Bradley et al. [2008a] (top left), was used for
garment capture in Bradley et al. [2008b] (top right), and Miguel et al. [2012] (bottom).

A good starting point for multi-view reconstruction algorithms is the Patch-based Multi-View Stereo (PMVS) ap-
proach of Furukawa and Ponce [2010]. Their method begins by matching features across multiple pictures to obtain
a sparse set of corresponding patches, which are then repeatedly expanded to spread the initial matches to nearby
pixels until a dense set of correspondences are found. This method performs well on benchmark datasets [Seitz et al.
2006; mview ], and the software is available online (http://grail.cs.washington.edu/software/pmvs/). The authors
have also extended this approach to be usable for dense motion capture from video streams of garments [Furukawa
and Ponce 2008] and faces [Furukawa and Ponce 2009].

An alternative approach is the method of Bradley et al. [2008a], which aims for both accuracy and efficiency. When
reconstructing many frames of a deforming surface, efficient runtimes are favorable. This technique has been used
for several applications of reconstructing deforming surfaces [Bradley et al. 2008b; Bradley et al. 2010; Miguel et al.

15



cBinocular Stereo Hierarchical Surface
apture wi care = - -
Window Matching '\s'mP"ﬁcat"m -\:ieconstrucﬂan

Point-based
Filtering

Merge and

Images Normal Estimation

Figure 12: Overview of the multi-view reconstruction algorithm of Bradley et al. [2008a].

2012], and so it is a good choice for creating deformation examples for simulation. The method is performed in two
steps: binocular stereo on image pairs, followed by surface reconstruction. Since software is not available, in the
following we provide more details for the implementation of this technique.

Like most reconstruction algorithms, the input is a set of calibrated images, captured from different viewpoints
around the object to be reconstructed. A segmentation of the object from the background should be provided, so
that the visual hull is represented as a set of silhouette images. This is easy to achieve if you can capture in front of
a green screen or dark background. As we mentioned, the method is performed in two steps, binocular stereo and
surface reconstruction. Each step is broken down into individual stages, as illustrated in Fig. 12.

The binocular stereo part of the algorithm creates depth maps from pairs of adjacent viewpoints. First, image pairs
are rectified [Fusiello et al. 2000] so that each scanline in one image corresponds to exactly one scanline in the other
image. The depth of each pixel in one image is then computed by finding the corresponding pixel along the scanline
in the other image and then triangulating. Matching individual pixels can lead to many errors, so a common approach
is to match local neighborhoods instead, known as window-matching. Two local neighborhoods of NV pixels v and
v1 can be matched using Normalized Cross Correlation (NCC):

SV (wo(f) — 79) - (v1(j) — o1)
VI (w0(i) — )2 - S0 () — )2

where vy and v7 represent intensity averages over the neighborhoods. An NCC value of 1 indicates a perfect match,
and -1 is the worst possible match. Bradley et al. [2008a] use NCC in a robust window-matching procedure that com-
pensates for perspective distortions by matching under various non-uniform window scales. This feature improves
quality in high curvature regions (like the buckling of cloth) and for large camera base-lines (which allows for setups
with fewer cameras). The depth images from the binocular stereo pairs are converted to 3D points through triangu-
lation and simply merged into a single dense point cloud. The second part of the algorithm aims at reconstructing a
triangular mesh from the point cloud. It consists of three steps:

NCC(’I}o,Ul

; (N

1. Downsampling: The point cloud is usually much denser than required for reproducing the amount of actual
detail present in the data. The first step is thus to downsample the data using hierarchical vertex cluster-
ing [Boubekeur et al. 2006].

2. Cleaning: The simplified point cloud remains noisy. While some methods integrate the noise removal in the
meshing algorithm [Kazhdan et al. 2006], others feel that this important data modification must be controlled
explicitly, prior to any decision concerning the mesh connectivity. In this reconstruction algorithm, the prob-
lem is addressed at the point level using point-based filtering tools (see [Alexa et al. 2004; Gross and Pfister
2007] for an introduction), producing a filtered point set.
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3. Meshing: The final step is to generate a triangle mesh without introducing excessive smoothing. Building on
lower dimensional triangulation methods [Boubekeur et al. 2005; Gopi et al. 2000], triangle mesh patches are
created in 2D and then ”lifted” to 3D as mini-heightfields. This approach is fast and runs locally, ensuring
scalability and good memory-computational complexity.

Here we have briefly described only two out of the multitude of multi-view stereo algorithms that have been pub-
lished (currently over 50 are evaluated at http://vision.middlebury.edu/mview/eval/). Choosing the right method for
your application can be a challenging and time-consuming process. Our hope is to provide enough background and
resources to find the best reconstruction algorithm that suits your needs.

3.3 Temporal Tracking

The geometry reconstruction algorithms from the previous section can be used to compute a triangle mesh per-frame
of the deforming surface. While it is important to obtain the time-varying shape, the full 3D deformation must
also include surface tracking, such that the 3D motion of each surface point is reconstructed. A convenient way to
represent the deformation is a triangle mesh with constant connectivity over time and varying vertex positions. In this
section we discuss different ways to perform temporal tracking and couple the result with the per-frame geometry to
obtain reconstructed surface deformations.

In this course we will focus on optical tracking, where it is assumed we have images of the deforming surface. When
images are not available, a complementary form of tracking can be used, which relies entirely on the deforming
geometry. For example, non-rigid shape registration can generate dense surface correspondences over time. A good
overview of these techniques is given in the recent Eurographics Tutorial by Wand et al. [2012]. In the remainder of
this section, we focus our discussion on image-based tracking methods.

Early work in tracking deforming surfaces was to use hand-placed markers which can be identified and tracked with
ease [Williams 1990; Guenter et al. 1998]. This idea has led to great success in marker-based facial performance
capture [Lin and Ouhyoung 2005; Bickel et al. 2008; Ma et al. 2008a], which currently drives facial animation in
the entertainment industry. For cloth, some of the first research in capturing garment motion from video has also
employed marker-based techniques [Scholz et al. 2005; White et al. 2007]. These methods use a unique encoding of
color marker arrays to locate specific points on a garment over time. Fig. 13 shows a few examples of marker-based
reconstruction and motion capture for cloth.

Figure 13: Marker-based motion capture methods for cloth. Left: Scholz et al. [2005], Right: White et al. [2007].

More recent research has shown that dense motion capture can be achieved in a markerless setting, if the surface
can be painted with a high-frequency texture [Furukawa and Ponce 2009; Miguel et al. 2012] or with high enough
image resolution to use fine details as surface texture [Bradley et al. 2010; Beeler et al. 2011]. Furukawa and Ponce
track face motion starting with their previous work on dense 3D motion capture [Furukawa and Ponce 2008], which
assumes tangentially rigid motion, and then introducing a new tangential regularization method capable of dealing
with the stretching, shrinking and shearing of deformable surfaces such as skin [Furukawa and Ponce 2009].

The methods of Bradley et al. [2010], Beeler et al. [2011] and Miguel et al. [2012] all rely on dense 2D optical flow
in order to compute the 3D surface motion. Optical flow is an image-space vector field that encodes the motion
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of the pixels from one frame to the next in a video sequence (see Baker et al. [2011] for a survey of techniques).
Although each reconstruction approach varies slightly in the use of optical flow for 3D tracking, the general ideas are
similar. For the purpose of notation, lets call the per-frame geometry reconstructions G*, where t corresponds to the
frame number or time. These meshes can be the raw result of the reconstruction algorithms described in the previous
section. Given G and the optical flow fields of each input video, we would like to generate a set of compatible
meshes M! that have the same connectivity as well as explicit vertex correspondence. That is to say, we desire one
mesh that deforms over time. Without loss of generality, we can choose M? to represent the global topology, and
then the goal is to track MY forward (and possibly backwards) in time to establish the mesh sequence M. The basic
tracking approach is illustrated on face meshes in Fig. 14, and it proceeds as follows. For each vertex vf‘l of Mt~1
we project the vertex onto each camera c in which it is visible (i.e. inside the field of view of and not occluded).
Let p; .. be this projected pixel. We then look up the 2D flow vector that corresponds to p; . and add the flow to get
a new pixel location p; .- Back-projecting from p; . onto G* gives us a guess for the new vertex location, which we
call 7j .

Figure 14: Basic mesh tracking using per-camera optical flow.

The figure illustrates the 3D motion estimation for vertex v; according to one camera, c. The estimates from all
cameras can be combined in a weighted average, giving more influence to the cameras that have a better view of the
surface point:

n

—t t —t
U = Zwi,c * Vi e 8)

c=1

where w! , is the dot product between the surface normal at o} . and the vector from there to c. Since each vertex

is updated independently, a regularization step avoids possible triangle-flips and removes any unwanted artifacts
that may have been present in the initial reconstruction. A common regularization approach for meshes stems from
Laplacian surface editing [Sorkine et al. 2004]. Following de Aguiar et al. [2008], we solve a least-squares Laplacian
system using cotangent weights and the current positional constraints o¢. Thus, we generate the final mesh M’ by
minimizing
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where L is the cotangent Laplacian matrix. The parameter o controls the amount of regularization.

Repeatedly propagating the mesh through time using optical flow can lead to several unpleasant artifacts (illustrated
in Fig. 15). First, optical flow tracks can be lost due to occlusion. Second, it is generally well-known that optical-
flow based tracking methods suffer from accumulation of error, known as drift. Lets first consider drift. Although
the error from one frame to the next is usually small and imperceptible, the error can accumulate over time, resulting
in incorrect motion estimation. Drift typically occurs because optical flow is computed between successive video
frames only. If it were possible to accurately compute flow between the first video image and every other frame,
there would be no accumulation of error. Unfortunately, most temporally distant video images in a capture sequence
are usually too dissimilar to consider this option. Bradley et al. [2010] and Beeler et al. [2011] present two different
solutions to this problem.

* Tracks can be lost due to occlusions * Small errors accumulate over time

Figure 15: Two problems that can happen when using optical flow with sequential propagation. 1) Tracks can be
lost due to occlusions, and 2) Small errors can accumulate over time and cause drift.

Bradley et al. [2010] compute a 2D parameterization of the surface (or a UV-map) and then build per-frame texture
images from the input videos. Two example texture images are given in Fig. 16. Every vertex of the mesh has
unique 2D coordinates in the parameter domain, yielding a one-to-one mapping between 2D and 3D mesh triangles.
Their main observation is that the texture domain of the mesh remains constant over time, which means that the
computed per-frame texture images are all very similar. Any temporal drift in the 3D geometry appears as a small
2D shift in the texture images, which can easily be detected, again by optical flow. Automatic drift correction is
then implemented as follows. After computing the geometry M and texture T* for a given frame, optical flow is
computed between the textures 70 and 7" . This flow (if any is detected) is then used to update M* on a per-vertex
basis using the direct mapping between the geometry and the texture. Any shift in texture space becomes a 3D shift
along the mesh surface. After updating the vertices to account for drift, Laplacian regularization is applied to avoid
possible triangle flips.

Beeler et al. [2011] take a different approach to eliminating drift in the reconstructed sequence. Leveraging the
fact that facial performances often contain repetitive subsequences, their method identifies so-called anchor frames
as those which contain similar facial expressions to a manually chosen reference expression. Anchor frames are
automatically computed over one or even multiple performances. This method introduces a robust image-space
tracking method that computes pixel matches directly from the reference frame to all anchor frames, and thereby
to the remaining frames in the sequence via both forward and backward sequential matching. This allows the
propagation of one reconstructed frame to an entire sequence in parallel, in contrast to the previous sequential
methods. This anchored reconstruction approach limits tracking drift, since every anchor frame brings the tracking
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Figure 16: Example face textures from Bradley et al. [2010]. Notice that the parameterization domain is constant
even though the 3D face and expression changes. The only change in the textures is due to wrinkles and appearance.

error back to (nearly) zero. The idea of using anchor frames also helps to overcome additional problems with
sequential motion tracking, and that is occlusion and motion blur. Sequential tracking methods would fail during an
occlusion or blurred frame, thus losing track of the surface and would not be able to recover. As a result, the motion
for the remainder of the performance would not be reconstructed. The anchor frame reconstruction framework can
recover from such tracking failure, as long as an anchor frame exists later on in the sequence. The main drawback of
the anchor frame approach is that it is designed specifically for deformation sequences that return to a similar pose
often throughout the sequence. With arbitrary non-cyclic deformations, you may not experience the benefits of this
algorithm.

Resulting facial performance reconstructions using the methods of Bradley et al. [2010] and Beeler et al. [2011] are
shown in Fig. 17 and Fig. 18, respectively. Each figure shows a reference image, the reconstructed geometry, and
the reconstructed motion illustrated with a grid overlaid on the deforming surface.

Figure 17: Deforming face reconstructions from Bradley et al. [2010]. The top row is a reference image, middle
row shows the resulting geometry, and bottom row shows the reconstructed motion using an overlaid checkerboard
pattern.
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Figure 18: Deforming face reconstructions from Beeler et al. [2011]. The top row is a reference image, middle row
shows the resulting geometry, and bottom row shows the reconstructed motion using an overlaid grid pattern.

While these tracking methods have been described in the context of facial performance capture, similar tracking
methods can be applied to any smooth deforming surface. The deformation examples in the data-driven cloth simu-
lation work of Miguel et al. [2012] were reconstructed using the same techniques.

3.4 Actuation and Forces

So far we have discussed different physical capture setups and various methods for 3D reconstruction of shape
and motion tracking for deforming surfaces. In order to capture examples for simulation, we often have additional
requirements. First, we should have complete control of the surface in order to actuate very specific deformations.
Secondly, we must reconstruct the forces that act on the surface and measure the complete answer that should be
predicted by a simulator. These additional challenges often lead to additional capture hardware and specialized
reconstruction algorithms. In this section we will outline some of the physical setups and algorithmic approaches
that have been used to acquire this additional information.

Bickel et al. [2009] acquire a set of example deformations of real objects, such as soft pillows and faces, including
force information using a simple capture system. Their acquisition system consists of force probes and a marker-
based reconstruction (see Fig. 19). Deformations are induced by physical interaction with the object, meeting the
requirement of having complete control of the surface. The second requirement (reconstructing forces), is met by
building contact probes with arbitrary shapes and circular disks of different diameters attached to the tip of a long
screwdriver. The position and orientation of the contact probe is estimated using two makers on the white shaft of
the screwdriver. To measure the magnitude of the contact forces, a force sensing resistor is used.

Wang et al. [2011] devise a setup for measuring in-plane cloth deformations using weights to create specific forces
(see Fig. 20). A piece of cloth is mounted vertically, with the top and bottom edges sandwiched between a pair of
wooden slats to constrain the motion in a controlled way. The left and right edges of the cloth are attached to clips
in the middle of each edge. These locations are treated as boundary conditions and their positions can be easily
measured using a calibrated camera. Wires are attached to the clips and then weights are attached to the other end of
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Figure 19: The capture setup of Bickel et al. [2009] uses force probes and marker-based reconstruction to acquire
example deformations of real objects.

the wires over pulleys in order to apply tension. The top edge of the cloth sample is attached to the top of the testing
board, while the other three edges have freedom to move. Different weights are applied on these three edges in order
to drag the cloth sample into different shapes. The left and right sides are loaded with the same weights so that the
sample does not lose its balance during the experiment. This is a simple mechanism to control the magnitude of the
force applied to the cloth, and is attractive since the setup is inexpensive and no specialized hardware is required.

Miguel et al. [2012] designed a more elaborate acquisition system for cloth that explores a substantial range of the
materials strain space, and records complete information about the forces applied to the cloth and the deformation
that it undergoes. Like Wang et al. (and previous work), this setup focuses primarily on tensile forces. Tests are
performed on 100 mm square cloth samples using two kinds of plastic clips: small, rounded clips that grab a localized
area, and long clips that grip one whole side of the sample. Forces are applied to the clips by fine wire cords that are
pulled to defined displacements by eight linear actuators, and the tension in the cords is monitored by miniature load
cells located at the actuator ends (see Fig. 21). Using the reconstruction methods described previously, the geometry
and motion of the cloth is captured. The location and orientation of the cords attached to the clips (which reveal the
direction of the applied force) are also reconstructed, by fitting 3D lines to reconstructed points along each cord (see
Fig. 22). This system, although more complex to construct than that of Wang et al., is able to produce

* The 3D configuration of the cloth sample, represented as a deformed mesh with 10K regularly sampled ver-
tices.

* The 3D positions and orientations of all clips attached to the cloth, including a list of clamped cloth vertices.

* The 3D forces applied to all clips. The magnitudes are determined by the tension measurements, and the
directions are determined by the observed directions of the cords.

Note that the actuator positions themselves are not part of the output, since they are superseded by the displacements
measured at the clips. This prevents stretching of the cord, or other factors affecting the distance between the clip
and the actuator, from affecting displacement accuracy.
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Figure 20: The capture setup of Wang et al. [2011] uses weights to control cloth deformations by applying specific
forces to a cloth sample at various attachment points.

These are just a few examples of physical setups that have been used to generate controlled deformation and measure
the forces in addition to the deforming geometry.

3.5 Deformation Examples

We conclude this section with some hints on what deformation examples might make sense to capture, and point to
data that is already available online.

The types of interesting deformations depends on the object you are capturing, and of course on the application you
have in mind. For cloth, it has been a popular idea to isolate specific stretching and bending deformations. Wang
et al. [2011] follow the biaxial tensile method in the textile literature, which tests the cloth sample by stretching it
simultaneously in both warp and weft directions. Using the setup described previously (recall Fig. 20), a number
of stretching tests are performed. For cloth materials with symmetric properties to their warp and weft directions,
they create three 400mm x 400mm cloth samples with bias angles 0°, 45° and 90° respectively. The bias angle
is defined as the rotational angle from the warp-weft coordinate system to the samples local coordinate system
counterclockwise. Warp and weft directions can be recognized from thread directions in the weaving structure for
most cloth materials. Each sample is typically tested by seven different weights at the bottom, going from 0g to
600g, and five weights on both sides, from Og to 400g. In total, there are 35 tests for each sample and 105 tests for
each cloth material. This test set covers the range of forces typically experienced by the cloth in clothing when it is
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Figure 21: The acquisition setup of Miguel et al. [2012] is designed to produce a variety of controlled deformations
through the use of actuators, wires, pulleys and force sensors.

Figure 22: Force measurements from the setup of Miguel et al. [2012].

worn. Cloth bending is also measured, by clamping a sample in a bent position. A sample is incrementally advanced
so that progressively more of it protrudes from the clamp, and the sample drapes into different curves under its own
weight. These curves are captured from a side view and the trajectory of each curve is manually labeled using point
features.

Motivated by the goal of parameter fitting, Miguel et al. [2012] designed deformation sequences of cloth that pro-
duce near-isolated strains, and allow estimating stretch, shear and bending properties in a separate and incremental
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manner. Unlike standard textile evaluation practices, they relax the requirement of uniform strains. Using the setup
described previously (recall Fig: 21), stretching is isolated by performing a uni-axial tension experiment, with forces
applied to two long bar clips attached to either side of the cloth. The cloth is slowly stretched until a maximum
force is reached and then slowly released back. The process is repeated three times, in both weft and warp directions
separately. Shearing is captured using an approximate picture-frame experiment, where four long clips fix the cloth
boundaries and shear stress is applied as the cords pull on opposite corners. Similar to Wang et al., to isolate bending
deformation they slowly push the flat cloth sample off the edge of a table and measure its shape as it bends under its
own weight, for both weft and warp directions. However, here Miguel et al. measure 3D bending rather than a 2D
curve. This gives a total of five measurements per cloth sample that are used for parameter fitting (two stretch, one
shear, and two bending). Additional, more complex, deformations are also captured for validating their algorithm.

These experiments on cloth all aim to capture the full strain-space of the material. If instead you are working with
faces, it is not as easy to isolate the different modes of deformation. However, a lot of work has focused on defining
a representative set of facial expressions, from which many new expressions can be formed. A standard set of
expressions has been defined in the Facial Action Coding System (FACS) of Ekman [1978].

Finally, since it can be a difficult task to capture real deformation examples for simulation, here is a short list of
datasets that are already available online:

* Cloth datasets of Wang et al. [2011] are available at
http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/

* Example garment capture sequences of Bradley et al. [2008b] are available at
http://www.cs.ubc.ca/labs/imager/tr/2008/MarkerlessGarmentCapture/data.html

* Facial performance capture data of Bradley et al. [2010] is available at
http://www.cs.ubc.ca/labs/imager/tr/2010/Bradley_SIG2010_FaceCapture/

* An example facial performance from Beeler et al. [2011] can be requested from
http://graphics.ethz.ch/publications/papers/paperBeel 1.php

* Datasets of articulated mesh animations of people from the work of Vlasic et al. [2008] can be obtained from
http://people.csail.mit.edu/drdaniel/mesh_animation/index.html

* Finally, similar datasets from the work of de Aguiar et al. [de Aguiar et al. 2008] can be requested at
http://www.mpi-inf.mpg.de/resources/perfcap/

25



4 Modeling Nonlinear Soft Tissue from Captured Mechanical Data
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5 Data-Driven Modeling of Nonlinear Elasticity in Cloth
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Model Fitting: Incremental Fitting
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Validation: Real Cloth Samples

/ Cotton satin \

* Very stiff in stretch
* Compliant in bending

/ Rayon/spandex knit \

* Isotropic
* Compliant in stretch and bending

/ Cotton denim \

* Stiff and quite isotropic in stretch
* Extremely anisotropic in bending

/ Wool/cotton blend \

* Anisotropic in stretch and
bending

Validation: Stretch

WARP-STRETCH
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Validation: Stretch
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Validation: Shear

G)ft Constraints \ / St.VK
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Validation: Shear

WARP-BENDING

The plot compares measured and simulated cloth profiles




Validation: Bend
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Validation: Corner-Pull
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Validation under experiments not used for fitting




Validation: Corner-Pull
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Approach 2 [Wang et al. 2011]
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ELASTIC MODEL DATA CAPTURE
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Elastic Model: Linear Model

e A full linear model




Elastic Model: Nonlinear Model

* Nonlinear orthotropic model
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Elastic Model: 2D Parameterization

* Simplified model
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Elastic Model: Bending

e Stiffness K
/

— Edge orientation (anisotropic)
— Bending angle (nonlinear)

Data Capture: Rest Conditions

------------------------------

|
1 Cloth sample |
I (40c_mx4Q¢_m) 1
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Data Capture: Bending

features

Fitting & Results: Optimization

arg min

stiffness
parameters

capture device

simulator

3 =

Simulated Shapes




Fitting & Results: Nonlinear Model

stiffness

Linear Model

0.05 0.1

015 02

Nonlinear vioae:

Fitting & Results: Dataset

Color & Name Ivory Rib Knit Pink Ribbon Brown | White Dots on Black | Navy Sparkle Sweat | Camel Ponte Roma
Composition 95% Cotton 100% Polyester 100% Polyester 96% Polyester 60% Polyester
5% Spandex 4% Spandex 40% Rayon
Common Usage Underwear Blanket Tablecloth Sweater Jacket
Density (kg/m?) 0276 0.228 0.128 0.224 0.284
Error (mm) 1.92 1.66 242 3.24 1.67
Color & Name Gray Interlock 1oz Black Denim | White Swim Solid Tango Red Jet Set Roval target
Composition 60% Cotton 99% Cotton §7% Nylon 100% Polyester 65% Cotton
40% Polyester 1% Spandex 13% Spandex 35% Polyester
Common Usage T-shirt Jeans Swimsuit Fashion dress Pants
Density (kg/m?) 0.187 0.324 0.204 0.113 0.220
Error (mm) 2.58 2.30 1.57 2.06 0.89

http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/index.html




Fitting & Results: Comparison
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6 Animation of Faces with Data-Driven Wrinkles
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Goals

High-fidelity face model

 Realistic wrinkle formation
* Intuitive and easy to control
* |nteractive performance

e Re-use available data

Hybrid Face Model




Related Work

* Blend shapes

— [Parke 72,74]

— Automatic blending
[Pighin 98]

— Automatic segmentation
[Joshi 03]

— Morphable models
[Blanz and Vetter 99]

Related Work

* Blend shapes
* Anatomical models
— [Koch et al. 96]

— [Essa et al. 96]
— [Sifakis et al. o5]

[Sifakis et al. o5]




Related Work

* Blend shapes
* Anatomical models
e Multi-Scale Capture of Facial Geometry
and Motion
— [Bickel et al. 07]

— [Ma et al. 07]
— [Beeler et al.11]

[Ma et al. 07]

Hybrid Model

Rest Pose  Handle Vertices
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Overview

/ Rest Pose  Handle Vertices
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Large-Scale
\ Linear Deformation
Feature Graph  Examples
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Pose Space Deformation
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Thin-Shell
Energy
Minimization

[Botsch et al. 04;

Bickel et al. 07]
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Large-Scale Deformation

q " .9 ‘ ° °

Linear \e ": .
Thin-Shell

Energy

Minimization

xw(8)

_[_A—-1 ’
11—[ ABAHJ uy

[Botsch et al. 04;
Bickel et al. 07]

Large-Scale Deformation

" Large-Scale
Deformation

MocapMarkers Skin Rendering




Overview

Rest Pose  Handle Vertices

é Large-Scale
Linear Deformation

ﬂeature Graph  Examples

Fine-Scale
K Pose Space Deformation j

Fine-Scale Deformation

Large-Scale
Deformation




Fine-Scale Deformation

--‘
KR

* Correlation wrinkling and lateral compression [Wu et al. 96]

* Feature graph defines F-dimensional feature vector

f= [f1»---»fF]T
— /lz]

‘fi = (llpin —

Fine-Scale Deformation

* Pose-Space Deformation [Lewis et al. 00]
* Mapping facial pose to 3D fine-scale displacements

d: R — IRBV}
- =
= > w; o (If - £])
=i

biharmonic RBF kernel (7“) =r

AL




Fine-Scale Deformation

Problem: Exponential growth of example poses

d(f) = > w;- e (If £

Example poses

Fine-Scale Deformation

* Weighted Pose-Space Deformation

. 1/2
If — £ |: (Z(fi — fj,i)2>
i—1

P
d,(f;) = ZW’U,j : SO(Hf - fij)
j=1

0




Fine-Scale Deformation

Fitting RBFs

| € \
Y | | =

Compact basis P

{l 1
) H || =
w \
| = | = j

Large training set T

Y11 P12 ... PP Wi
Y21 P22 ... Q2P W3
Yr1 $Yr2 ... PT.P wp

Least-squares fit
(solve PxP system per vertex)

Fine-Scale Deformation

Large-Scale Deformation

Final Result




Results

Real-Time Animation

Goals

High-fidelity face model
®, Realistic wrinkle formation

®. Intuitive and easy to control

B Interactive performance
B Re-use available data




Performance

| e || amesm | v NWidia 8200 GTX, CUDA

e 530k vertices

Large-Scale 9 ms
Small-Scale 18 ms * 6 example poses
Standard Renderer 4 ms * 89 handle vertices,
Skin Renderer 243 feature edges
[D’Eon et al. 07] B me
Total
Skin Renderer 15 fps
Total 30 fps

Standard Renderer




Goals

High-fidelity face model
¥, Realistic wrinkle formation

¥. Intuitive and easy to control
¥. Interactive performance
B Re-use available data

Overview

Rest Pose  Handle Vertices
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= se, 0,
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Large-Scale
Linear Deformation

Feature Graph Examples

Fine-Scale
Pose Space Deformation




Overview

€

[ Existing Animation

l. s

Feature Graph  Examples

Fine-Scale
Pose Space Deformation

Transfer

* Visually enhance face animations
* Re-use available fine-scale data

1. Establish correspondence
2. Transfer feature graph and fine-
scale data
3. Evaluate
— Strain
— Fine-scale displacements




Results

Transfer
>

Source Model Target Model

Results

Transfer

—

Source Model Target Model




Results

Results

Transfer
—

\
Source Model @

Summary

* Constrained deformation approach
— Driven by handles

* Example-based deformation approach
— Strain-based

* Benefits
Complex wrinkling effects
Intuitive and easy control
Interactive performance
Transfer of facial details

[ Large-Scale ][ Fine-Scale ]




7 Clothing Animation with Wrinkle Synthesis from Examples
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Clothing Classification

Skin Swimsuit Shirt

For example: For example:
[Allen et al. 2002] [Baraff and Witkin 1998]
[Mohr and Gleicher 2003] [Bridson et al. 2002]

Principle I: Poses decide cloth wrinkles.




Principle ll: Wrinkles are similar.

Synthesize

>

Principle lll: Wrinkles are affected locally.

Wrinkle Database




System Pipeline

Synthesize
Merge

i

by

The Database
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Dat__abase Construction

—_—‘
-

I
” &
i Samples ’
Shlrt" T = -A 59 ---- B
Separate Joint (our)
, 9 o 14+126+126+14+45=325
! ‘ ‘ * 90+90+11+11=202
/ ‘_ \
: | Combined Joint (bad)
| I 14%x126%x126%x14x45=140M
v 1L 11 1 90x90x11x11=1M
# Sampl /
/
\ /
Pants'\ _ e

Create a body mesh sequence.

e Simulate cloth with body motion,
using a large damping force.

* Pick some frames as joint samples.

e Assign each sample with the
corresponding cloth mesh.

(48 to 72 hours in total.)




System Pipeline

Intra-Joint Interpolation




Intra-Joint Interpolation

Intra-Joint Interpolation

Mesh Sample 1

Interpolated Result

Mesh Sample 2




System Pipeline

Merge

=0

Inter-Joint Merging

.

X = ZWi(Xz’)Xz‘

I




Ours

Analysis

Weight map: Elbow

Elbow Front Elbow Back
Inner Outer
Elbow Elbow

Wrinkle Synthesis Limitations

1. No global dynamics 2. Collisions

Wrinkles Only




System Pipeline

Synthesize
Merge

v

Detail Transfer







Wrinkle Detail Transfer

Synthesized Mesh | Transfer Final Mesh *




Summary

* Focused on common clothes, has wide applications
— Games
— Fast preview for offline physical simulation

 Combines physics with the database
— Greatly reduces the computational cost
— Provides realistic results.

* Reduces a whole pose space to local pose spaces




8 Outlook

This course focuses on three applications of data-driven methods in computer graphics: cloth, tissue and face anima-
tion. Data-driven methods have also been successfully applied to character motion, and we expect that data-driven
approaches will become popular in other areas of simulation in computer graphics too. To maximize their applica-
bility, it will be crucial to understand which processes and properties can be modeled accurately with data-driven
approaches. Effort should be devoted to developing general algorithmic and methodological procedures, together
with a clear understanding of their limitations.

One of the major difficulties in data-driven methods is to find suitable descriptions of the simulated processes.
Those descriptions have an impact on the smoothness and fairness of the output functions, which in turn affect
the robustness and accuracy of interpolation and optimization methods. Multi-scale process decompositions appear
particularly interesting in situations where fine-scale effects dominate the computational cost and the modeling
complexity.

To conclude, the application of data-driven simulation methods in the computer graphics industry will depend largely
on the access to accurate data. To this end, progress must be made along two paths. One is the creation of data
libraries, both geometric and mechanical, that can be used by a large set of developers. The other is a combined
progress of algorithms and capture systems, to enable fast and cheap synthesis of data-driven models.
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