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1 Introduction

In recent years, the field of computer animation has witnessed the invention of multiple simulation methods that
exploit pre-recorded data to improve the performance and/or realism of dynamic deformations. Various methods
have been presented concurrently, and they present differences, but also similarities, that have not yet been analyzed
or discussed. This course focuses on the application of data-driven methods to three areas of computer animation,
namely dynamic deformation of faces, soft volumetric tissue, and cloth. The course describes the particular chal-
lenges tackled in a data-driven manner, classifies the various methods, and also shares insights for the application to
other settings.

The explosion of data-driven animation methods and the success of their results make this course extremely timely.
Up till now, the proposed methods have remained familiar only at the research context, and have not made their
way through computer graphics industry. This course aims to fit two main purposes. First, present a common
theory and understanding of data-driven methods for dynamic deformations that may inspire the development of
novel solutions, and second, bridge the gap with industry, by making data-driven approaches accessible. The course
targets an audience consisting of both researchers and programmers in computer animation.

1.1 Course Structure

Current data-driven methods for dynamic deformation exploit pre-recorded data in one of two ways. Some methods
build on traditional mechanical models to simulate deformations of soft tissue [Pai et al. 2001; Lang et al. 2002;
Schoner et al. 2004; Schnur and Zabaras 1992; Becker and Teschner 2007; Kauer et al. 2002; Kajberg and Lindkvist
2004; Bickel et al. 2009; Bickel et al. 2010] or cloth [Breen et al. 1994; Eberhardt et al. 1996; Volino et al. 2009;
Bhat et al. 2003; Kunitomo et al. 2010; Wang et al. 2011; Miguel et al. 2012], but parameterize those models in a
versatile fashion by interpolation of parameter values estimated from real deformation examples. Other methods, on
the other hand, interpolate geometric information on cloth [Wang et al. 2010; de Aguiar et al. 2010; Feng et al. 2010;
Kavan et al. 2011; Zurdo et al. 2012] or faces [Bickel et al. 2008; Ma et al. 2008b], and define the information, the
interpolation domains, and the interpolation functions, from pre-recorded data. To properly describe each method
and facilitate the discussion of differences and similarities, the course starts with an overview and classification of
the main approaches.

Figure 1: Example of data-driven cloth simulation with the method of [Miguel et al. 2012]. From left to right, image
of the real cloth, reconstructed geometry, and simulation result.

Then, the course dwells on the description of methods that rely on mechanical data. The course covers two different
applications of mechanical-data-driven methods. Fig. 1 shows an example of cloth simulation where cloth deforma-
tion models have been estimated from a combination of force-and-deformation information in multiple deformation
examples. A similar strategy is followed in the example in Fig. 2, but this time to estimate solid deformation mod-
els for soft tissue simulation. The material for the course is combined and adapted from recent publications in
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Figure 2: From left to right: force-and-deformation capture of a non-linear heterogeneous pillow; deformation
synthesized with fitted material parameters and the method of [Bickel et al. 2009]; and interactive deformation
under different boundary conditions.

data-driven cloth [Wang et al. 2011; Miguel et al. 2012] and soft-tissue modeling [Bickel et al. 2009; Bickel et al.
2010].

The course also describes animation methods that rely on geometric data. To demonstrate the possibilities of such
methods, we present techniques that target two distant applications: animation of highly detailed human faces and
cloth animation. Fig. 3 shows facial animation examples where expression wrinkles are synthesized in a data-driven
manner. Fig. 4, on the other hand, shows cloth animation examples where folds and wrinkles are synthesized in a
data-driven manner. The material for the course is adapted mostly from recent publications in these fields [Bickel
et al. 2008; Wang et al. 2010], but we also draw connections with other related methods [Ma et al. 2008b; Kavan
et al. 2011], and we discuss the general challenges in defining interpolation functions and domains.

Figure 3: Facial animation example with the method of [Bickel et al. 2008]. From left to right: large-scale defor-
mation example interpolating mocap markers, full result after example-based fine-scale correction, the same result
with full shading, and comparison to the real actor’s face.

One essential component of data-driven simulation methods is data capture, and due to this importance we dedicate
a chapter of the course to this problem. It shares challenges with performance capture, but it suffers additional
challenges too. Unlike traditional performance capture, which aims at obtaining a reconstruction of arbitrary motion,
data capture for data-driven modeling must be designed with the purpose of obtaining a sufficient representation of
an object’s range of deformations. Therefore, one must design deformation examples that visit the desired range of
deformations and suit optimization processes. Moreover, for mechanical-data-driven methods, the capture process
must obtain force information in addition to deformation. The material for the course combines and adapts content
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Figure 4: The method of [Wang et al. 2010] uses a precomputed dataset to synthesize cloth wrinkles (a) that are
layered onto a coarse base simulation (inset). The precomputed dataset can be used to synthesize wrinkles for a
wide range of poses (b and c).

from several recent publications [Bradley et al. 2008a; Bradley et al. 2008b; Bradley et al. 2010; Bickel et al. 2009;
Wang et al. 2010; Wang et al. 2011; Miguel et al. 2012].

1.2 Course Schedule

9:00 am Introduction and overview of methods [Otaduy]

9:20 am Tissue and cloth mechanics [Bickel/Otaduy]

9:50 am Capturing deformation examples [Bradley]

10:30 am Break

10:45 am Facial animation [Bickel]

11:25 am Cloth animation [Wang]

12:05 pm Conclusion / Q & A [all]

12:15 pm Close

1.3 Course Notes

The course notes begin with an overview and classification of methods in Chapter 2. Chapter 3 covers solutions for
capturing both deformations and forces in an ample set of applications. Then, Chapters 4, 5, 6, and 7 cover, respec-
tively, methods for mechanical-data-driven simulation of soft tissue, mechanical-data-driven simulation of cloth,
geometric-data-driven simulation of faces, and geometric-data-driven simulation of cloth. The course notes will be
progressively refined, and updated versions will be available on the course web page http://www.gmrv.es/SIG12Course.
The web page also provides links to publications with supplementary material.

1.4 Instructors

Miguel A. Otaduy is an associate professor in the Department of Computer Science at Universidad Rey Juan Carlos
(URJC Madrid). His main research areas are physically based computer animation and haptic rendering. He obtained
his BS (2000) on electrical engineering from Mondragón University, and MS (2003) and PhD (2004) on computer
science from the University of North Carolina at Chapel Hill. From 2005 to 2008 he was a research associate at ETH
Zurich, and then he joined URJC Madrid. He has published over 50 papers in computer graphics and haptics, and
has recently co-chaired the program committees for the ACM SIGGRAPH / Eurographics Symposium on Computer
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Animation (2010) and the Spanish Computer Graphics Conference (2010). He also leads the ERC Starting Grant
Animetrics, on measurement-based modeling of complex mechanical phenomena.

Bernd Bickel is a part-time visiting professor at TU Berlin and a post-doctoral researcher at Disney Research Zurich.
His research interests include computer graphics and its applications in animation, biomechanics, material science,
and computational design for digital fabrication. Recent work includes next generation 3D surface scanner devices,
performance capture, measuring and modeling the deformation behavior of soft tissue, and animation tools. Bernd
received a M.Sc. in Computer Science in 2006 and spent nine month at Mitsubishi Electric Research Laboratories
under the supervision of Prof. Hanspeter Pfister. He wrote his PhD thesis at ETH Zurich in the Computer Graphics
Lab headed by Prof. Markus Gross and defended in November 2010.

Derek Bradley is a postdoctoral researcher at Disney Research Zurich. He completed his Bachelor of Computer
Science in 2003 and Master of Computer Science in 2005, both at Carleton University in Canada. In 2010, Derek
obtained a PhD from the University of British Columbia in Canada, and then started with Disney Research Zurich in
September 2010. Derek’s main research interest is real-world modeling and animation, primarily through computer
vision techniques. He works on various 3D reconstruction projects including multiview stereo, facial performance
capture, and data-driven simulation.

Huamin Wang is an assistant professor in the department of Computer Science and Engineering, at the Ohio State
University. Previously, he was a postdoctoral researcher in the EECS department, at the University of California,
Berkeley. He received his Ph.D. from Georgia Institute of Technology in 2009, M.S. from Stanford University in
2004 and B.Eng. from Zhejiang University in 2002. His research interests are in computer graphics, computer
vision, and image processing techniques that are related to graphics and visualization applications. He is particu-
larly interested in incorporating real-world data into physically based simulation techniques, so animations can be
efficiently and realistically generated.
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2 Overview of Data-Driven Simulation Methods

In the interaction with our surrounding world, mechanical properties play a major role in how we perceive this world.
Motion, deformation, flow, fracture or contact, are all mechanical phenomena that allow us to discriminate materials
and objects, and to interact with them. Humans have long strived to understand such mechanical phenomena,
creating simulation models with which we can replicate or predict the outcome of mechanical processes and events.

It is important to acknowledge that the physical models of the major macroscopic mechanical phenomena are already
quite well understood. These models have typically been developed in other disciplines such as physics, mathematics
or various engineering fields, and they have made their way through computer animation accompanied by algorithms
that are geared to obtaining the desired perceptual stimuli, sometimes incurring in a trade-off between physical
realism and interactivity.

Even though the underlying physical models of mechanical phenomena are quite well understood, these phenomena
display other inherent sources of complexity that largely limit the applicability of computer animation. Complexity
is produced, for example, by nonlinear or anisotropic behaviors, by heterogeneous properties, or by a high dynamic
range. These sources of complexity are typically addressed by designing complex nonlinear constitutive models
to describe the mechanical behavior. However, these models are implemented using computationally expensive
simulation algorithms, which largely limit their applicability. Moreover, their parameters are difficult and tedious to
tune, particularly if the properties are heterogeneous. All in all, the animation of complex mechanical phenomena is
limited by the domain of effects captured by the underlying physical models and their parameterization accuracy.

Data-driven methods offer an alternative to complex constitutive models, as they turn the modeling metaphor into
the knowledge of a system’s response under several example conditions. This chapter describes the data-driven
modeling metaphor in the context of computer animation, formulates the mathematics of data-driven modeling
using two example applications, and introduces a classification of the various existing methods.

2.1 Example 1: Data-Driven Facial Wrinkles

Let us consider a face mesh, consisting of vertices with positions x ∈ R3. Vertex positions can be decomposed into
a low-resolution position x0 and a fine-scale displacement ∆x, expressed in a local reference system for each vertex
(i.e., with orientation R):

x = x0 + R ∆x. (1)

This definition of vertex positions essentially decomposes large-scale facial deformation (i.e., the overall expression
of the face) from the small-scale deformation (i.e., expressive wrinkles).

If no assumptions are made, the position of each facial vertex can be defined independently as a function of the
facial muscle activations and facial bone configurations. Let us group the muscle and bone configurations in a large
vector u. Moreover, due to dynamics, vertex positions are a function of time too. We can write this dependency
as x = f(u, t). However, due to the repetitive nature of facial expressions, face tissue becomes weaker at certain
locations, and expressive wrinkles appear in a deterministic fashion. Moreover, due the viscoelastic nature of facial
tissue, the motion of expressive wrinkles appears damped to the human eye. Under these conditions, we can draw
the conclusion that fine-scale wrinkle displacements can be defined as a function of some low-dimensional state u∗.
We can write this dependency as ∆x = f(u∗).

At this point, we have ingredients to define a data-driven model. The potentially high dimensional function of vertex
positions has been decomposed into a low-resolution position (inherently low-dimensional), plus a displacement
function that can be defined in some low-dimensional state. The remaining open questions are:

• What low-dimensional state u∗ describes best the fine-scale displacement?
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• Is the data-driven definition of each vertex completely independent, or can we find relationships across vertices
that allow the definition of some global low-dimensional state?

It turns out that, for a vertex, the local strain of the low-resolution face representation serves as a good low-
dimensional state. In other words, the existence of expressive wrinkles is closely related to the local strain of
the surface. There are multiple choices of strain metrics, and the only major condition for the selection of a strain
metric u∗ is that is should be invariant to rigid body motion. Fig. 5 shows the correlation between wrinkles and
strain defined through edge deformations.

Figure 5: Correlation between expressive wrinkles and local low-resolution strain (measured through edge deforma-
tions). The existence of this correlation enables the definition of a natural low-dimensional domain for interpolating
wrinkle displacement data.

Once a low-dimensional state is selected, the problem is ready for data collection. In our example, the collected data
consists of vertex displacement values {∆xi} and local strain values {u∗i } in correspondence. This data enables
the approximation of the function f through learning methods. One popular example is scattered-data interpolation
based on radial basis functions. Then, the approximate function f̄ can be formally defined as:

∆x ∼ f̄(u∗, {∆xi}, {u∗i }) =
∑

i

ωi φ(u∗,u∗i ), (2)

where φ represents a radial basis function, and the weights ωi are estimated as those that fit best the input data
{∆xi}.
The approach described so far is successful at describing vertex positions in a data-driven manner, but defines the
position of each vertex in a completely independent manner, and may suffer from spatial discontinuities. Ideally, we
seek a solution that ensures spatial continuity (and smoothness). The solution is to impose conditions on the captured
data and the output of the learning stage, to ensure that vertex displacements are defined based on continuous (and
smooth) functions. [Bickel et al. 2008] achieve continuity by building their learning technique as a weighted pose-
space deformation method. Their approach is described in detail in Chapter 6.

From this example, we can draw several important general conclusions. First, there are certain animation settings that
can be modeled efficiently through interpolation of geometric information obtained from representative examples.
Second, to find a function that can be described through interpolation, one often successful approach is to decompose
the geometric representation in a multi-scale fashion. And third, the definition of an effective interpolation domain
can be simplified through the projection of the data to a low-dimensional domain. In the case of expressive wrinkles,
local low-resolution strain constitutes a natural low-dimensional domain.
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2.2 Example 2: Data-Driven Soft Tissue

Let us consider a deformable solid discretized with tetrahedra. A vector x concatenates the positions of all nodes
in the solid, and a vector F concatenates the internal forces (due to elastic deformation) acting on the nodes. Under
linear elasticity theory, the internal forces are simply proportional to the amount of deformation, measured as the
deviation from the rest configuration x0. The linear relationship between deformation and forces is called the
stiffness matrix K, and can be computed using the Finite Element Method. For a homogeneous material, this
stiffness matrix depends solely on the structure of the tetrahedral mesh and two material parameters: Young modulus
(E) and Poisson ratio (ν). Then, we can formally define the internal forces of the solid as:

F = −K(E, ν) (x− x0). (3)

Unfortunately, real materials are nonlinear, and two parameters hardly describe real elastic behavior. The traditional
solution to tackle this problem is to turn to more complex constitutive models, not just linear. However, in a local
neighborhood of a given deformation state, a linear model is typically a good descriptor of the material. The complete
deformation state of the solid can be described by concatenating the strain tensors of all tetrahedra in a large vector u.
Then, the local linear behavior of the material can be defined as a function of the deformation state, [E, ν] = f(u).
It turns out that, by describing separately the material parameters of each tetrahedron, the local linear behavior is
well described as a function of the local strain of the tetrahedron itself, which constitutes a considerably lower-
dimensional domain. Then, if we define the strain of just one tetrahedron with a vector u∗, the local linear behavior
of that particular tetrahedron can be defined as a function [E, ν] = f(u∗). Fig. 6 shows two example distributions
of Young modulus under different strains.

Figure 6: The top row shows a deformable pillow under two different external forces. The bottom row compares the
distribution of values of Young modulus that best describe the behavior of the pillow under these two forces.

Now, we have reached the ingredients for a data-driven method. Following Example 1, the collected data should
consist of material parameter values {[Ei, νi]} and local strain values {u∗i } in correspondence. Unfortunately, mate-
rial parameter values are difficult to be directly measured on real solid objects. Instead, we opt to collect measurable
data, in particular external force values {Fext,i} and position values {xi} in correspondence.

If the data is collected under equilibrium conditions, we can relate nodal positions and applied forces through a
quasi-static deformation problem,

x = K(E, ν)−1 (Fext + Fother) + x0. (4)
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This relationship should hold for all collected pairs of force and deformation data, and this fact will help us estimate
the function f that relates tetrahedral strain to material parameter values. To make the problem specific, and similar
to Example 1, we can define an approximate function f̄ through radial-basis-function interpolation:

[E, ν] ∼ f̄(u∗, {[Ei, νi]}, {u∗i }) =
∑

i

ωi φ(u∗,u∗i ), (5)

But recall that, unlike Example 1, in this case the parameter values {[Ei, νi]} are unknown, and the strains {u∗i }
cannot be directly measured either. Instead, the strains {u∗i } will be sampled to sufficiently cover the range of
strains in the collected data, and, most importantly, the unknowns of the problem, i.e., the weights of the radial
basis functions, ωi, will be estimated by solving an optimization problem. The error function for this optimization
problem can be defined as the Euclidean norm between measured positions {xj} and positions estimated using the
data-driven method,

ε =
∑

j

∣∣∣∣∣∣K
(∑

i

ωi φ(u∗,u∗i )

)−1

(Fext,j + Fother) + x0 − xj

∣∣∣∣∣∣
2

. (6)

[Bickel et al. 2009] build on a similar data-driven approach to model nonlinear heterogeneous soft tissue, but they
select different material parameters that simplify the optimization problem. Chapter 4 describes their approach in
detail.

From this example, we can draw several important general conclusions. First, there are certain animation settings
where mechanical parameters can be modeled efficiently through data-driven interpolation. In the case of nonlinear
elasticity for soft-tissue deformation, the nonlinear behavior can be modeled through interpolation of local linear
models. However, unlike the previous example, parameter data may not be directly measured from examples, which
brings us to the second conclusion. By collecting force and deformation data from examples, interpolation weights
for the model of mechanical parameters can be estimated through numerical optimization.

2.3 Classification of Methods

To classify data-driven simulation methods in computer animation, we assume that their final output consists of
the (deformed) geometry of simulated objects. Then, this geometry is used in the context of rendering algorithms
to generate synthetic images of the simulated scene. Drawing from the two examples described above, we can
draw a clear classification of data-driven simulation methods into two major categories. One category, represented
by Example 1, models in a data-driven manner the geometry itself. The other category, represented by Example
2, models in a data-driven manner some mechanical parameters, and the geometry is obtained as a result of a
mechanical model.

Then, we distinguish between geometric-data-driven methods and mechanical-data-driven methods. In both cases,
the data collected in examples includes geometric information (i.e., deformation), but in mechanical-data-driven
methods this data should be augmented with force information. Both categories of methods may share techniques for
learning, interpolation, or subspace projection. But in mechanical-data-driven methods, the optimization procedures
for model fitting require objective functions that account for the mechanical process that relates model parameters
to deformation.

Based on our dichotomy of methods, a representative (although not exhaustive) list of data-driven simulation meth-
ods in computer graphics (for cloth, tissue and faces) can be classified as follows:

• Geometric-data-driven methods for cloth [Wang et al. 2010; Feng et al. 2010; Kavan et al. 2011; Zurdo et al.
2012].
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• Geometric-data-driven methods for faces [Bickel et al. 2008; Ma et al. 2008b].

• Mechanical-data-driven methods for solid tissue [Pai et al. 2001; Lang et al. 2002; Schoner et al. 2004; Schnur
and Zabaras 1992; Becker and Teschner 2007; Kauer et al. 2002; Kajberg and Lindkvist 2004; Bickel et al.
2009].

• Mechanical-data-driven methods for cloth [Breen et al. 1994; Eberhardt et al. 1996; Volino et al. 2009; Bhat
et al. 2003; Kunitomo et al. 2010; Wang et al. 2011; Miguel et al. 2012].
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3 Capturing Geometry and Forces in Real Deformation Examples

In this section we will discuss the process of capturing deformation examples for data-driven simulation. Recently,
many different techniques have emerged for capturing the 3D deformation of real surfaces such as cloth [Scholz et al.
2005; White et al. 2007; Bradley et al. 2008b; Furukawa and Ponce 2008] and faces [Furukawa and Ponce 2009;
Bradley et al. 2010; Beeler et al. 2011]. These methods primarily use vision-based approaches to acquire both the
time-varying shape and corresponding motion of the surface. When capturing deformation examples for simulation
we can make use of these general methods, however recovering only shape and motion is typically not enough. In
the simulation setting, we must also reconstruct the forces that act on the surface and measure the complete answer
that should be predicted by a simulator. This additional challenge often leads to additional capture hardware and
specialized reconstruction algorithms. Another point to consider is that the choice of deformation examples can be
more critical when considering that the reconstructions will be used in a simulation setting. Often we wish to explore
the full range of a material’s strain space, possibly exciting different subsets of strain independently. As an example,
we may wish to separate the weft strain from the warp strain when deforming a piece of cloth, or actuate different
face muscles independently in order to isolate specific facial expressions.

Several recent methods have successfully combined traditional reconstruction algorithms with novel capture tech-
niques for data-driven simulation [Bickel et al. 2009; Wang et al. 2011; Miguel et al. 2012]. These methods form the
main focus of our discussion in this course. Here we will give an overview of the related capture setups and recon-
struction algorithms, starting with the basics of Cameras and Lights (3.1), algorithms for Geometry Reconstruction
(3.2), computing deformation through Temporal Tracking (3.3), obtaining the complete picture of Actuation and
Forces (3.4), and finally concluding with some hints on which Deformation Examples (3.5) might make sense to
capture.

3.1 Cameras and Lights

When designing a capture setup, some thought should go into the choice of cameras to use. The first question is
whether you need video or still cameras, and this is depends on the examples you wish to capture. Wang et al. [2011]
showed that different cloth strains can be isolated in a static way, in which case still cameras such as digital SLRs
are sufficient. Still cameras are often used for capturing isolated facial expressions as well [Beeler et al. 2010]. In
many cases, however, you will want to capture moving surfaces using video cameras.

The choice of video cameras depends less on the capture application and more on budget. Two options are scientific
machine vision cameras or off-the-shelf consumer camcorders. In addition to cost, other factors to consider are
camera synchronization, rolling shutter distortions, and system portability. Fig. 7 outlines the tradeoffs between the
two. The primary benefit of machine vision cameras is that they can be perfectly synchronized using a hardware
trigger. They also provide raw, uncompressed images captured with a global shutter model (i.e. every pixel is
exposed at the exact same time). If budget is not an issue then machine vision cameras are the recommended way to
go.

On a stricter budget, consumer camcorders are evolving as promising alternatives to scientific cameras in many
computer vision applications [Bradley et al. 2008b; Bradley et al. 2010; Atcheson et al. 2008]. They offer high
resolution and guaranteed high frame rates at a significantly reduced cost. Also, integrated hard drives or other
storage media eliminate the need to transfer video sequences in real-time to a computer, making multi-camera
setups more portable. There are two challenges that currently limit the use of such camcorders, especially in multi-
camera and camera array applications. First, consumer camcorders typically do not have support for hardware
synchronization. Second, in contrast to the global shutter model of scientific cameras, most consumer cameras
employ a rolling shutter, in which the individual scanlines use a slightly different temporal offset for the exposure
interval (see, e.g. Wilburn et al. [2004]). An illustration of this camera model is shown in Fig. 8. The resulting frames
represent a sheared slice of the spatio-temporal video volume that cannot be used directly for many computer vision
applications. Bradley et al. [2009] have proposed a solution to the synchronization and rolling shutter problem by
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Figure 7: Trade-offs between machine vision cameras and consumer camcorders.

capturing under stroboscopic illumination. Strobe lights provide short pulses of illumination, exposing the scene to
all cameras at the same time. Even in the rolling shutter model, this approach will optically synchronize all scanlines
across all cameras. Fig. 9 illustrates this idea and shows experimental results of synchronizing consumer camcorders.
Beeler et al. [2010] also use triggered flashes to synchronize multiple digital SLRs for face reconstruction. The
tradeoff of these techniques is that more sophisticated lighting hardware is required, and capture must occur in a
dimly-lit indoor environment.

A final point on cameras is calibration. Simple white-balancing is often sufficient for radiometric calibration, but
more sophisticated color calibration can also be achieved by photographing a color calibration chart. For geometric
calibration we must determine the intrinsic parameters, which define how the camera forms an image, and a set of
extrinsic parameters, which define the position and orientation of the camera in the world. In most cases, the common
calibration technique of Zhang [1999] will suffice. This method is widely used and an implementation is readily
available in the OpenCV library [ope ]. The basic idea is to capture a number of images of a planar calibration target
with known proportions, and then solve for all the camera parameters such that the reprojection error of the target
is minimized. Some camera setups, such as a hemispherical camera array, require more sophisticated calibration
techniques. We refer to examples such as Beeler et al. [2010] and Bradley and Heidrich [2010].

3.2 Geometry Reconstruction

Reconstructing a deforming surface is often a two-step process. First, the geometry of the surface is acquired,
capturing the changing shape of the surface over time. Second, the motion of the surface is extracted, recovering the
full 3D deformation. This section describes methods for recovering shape.

There exists a large body of computer vision literature on reconstructing shape from images. A good survey can be
found in Seitz et al. [2006]. One approach is to keep things simple, if your simulation environment allows it. Wang
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Figure 8: Rolling shutter camera model, with time as the horizontal axis and scanlines as the vertical axis. The blue
region indicates the exposure. ∆e is the exposure time, ∆t is the frame duration (one over the frame rate), S is the
total number of scanlines per frame, and t(j) is the read-out time of the topmost (visible) scanline in frame j. The
just-in-time exposure and readout of the individual scanlines creates a shear along the time axis.

Figure 9: Stroboscopic Illumination. Top: A flash of light in a dark room exposes all scanlines simultaneously,
removing the rolling shutter distortion. The image is split across two consecutive frames, but can be combined in
a post-process. Bottom: Strobe lighting synchronizes two consumer camcorders observing a falling ball. As a side
effect, motion blur is also removed.

et al. [2011] show that in-plane cloth deformation can be reconstructed in image-space from a single view and a few
labelled feature points (see Fig. 10). More complicated 3D shape recovery typically requires several cameras and
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multi-view reconstruction algorithms (for example, Fig. 11).Data-Driven Elastic Models for Cloth: Modeling and Measurement · 71:5

connector 
direction

point feature

(a) Original photograph (b) Point features (in red) and initialized cloth mesh (a) Final cloth mesh

Figure 8: A 45� cloth sample shown in (a) is tested by hanging weights on its three edges. We use labeled point features (in red) to construct
an initial cloth mesh in (b). Labeled connector directions (in green) are used as force directions in the simulator, so that the simulated
cloth mesh finally matches with the observation as shown in (c). In (b) and (c) a grid of parameter lines from the simulated cloth has been
superimposed on an image of the real cloth to allow comparison. Images copyright Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi.

4.1.1 Experiment Setup

To fit the stretching parameters, we design experiments that demon-
strate a su�cient set of cloth behaviors, and enable easy comparison
of real and simulated data during optimization. Our method is in-
spired by the biaxial tensile method in the textile literature, which
tests the cloth sample by stretching it simultaneously in both warp
and weft directions. We configure a stretching tester as shown in
Figure 7. For cloth materials with symmetric properties to their
warp and weft directions, we create three 400mm⇥400mm cloth
samples with bias angles 0�, 45� and 90� respectively. The bias an-
gle is defined as the rotational angle from the warp-weft coordinate
system to the sample’s local coordinate system counterclockwise.
Warp and weft directions can be recognized from thread directions
in the weaving structure for most cloth materials.

To constrain cloth motion in a controlled way, the top and bottom
edges are each sandwiched between a pair of wooden slats, and the
left and right edges are attached to white cardboard rectangles in
the middle of each edge. These locations are treated as boundary
conditions and their positions can be easily measured using a cali-
brated camera. During each test, the top edge of the cloth sample is
attached to the top of the testing board, while the other three edges
still have freedom to move. Di↵erent weights are then applied on
these three edges in order to drag the cloth sample into di↵erent
shapes. The left and right sides are loaded with the same weights
so that the sample does not lose its balance during the experiment.
Each sample is typically tested by seven di↵erent weights at the bot-
tom, going from 0g to 600g, and five weights on both sides, from
0g to 400g. In total, there are 35 tests for each sample and 105 tests
for each cloth material. This test set covers the range of forces typ-
ically experienced by the cloth in clothing when it is worn. We use
a calibrated DSLR camera to capture the cloth shape in each test.
The camera is mounted approximately four meters away from the
board with a long-focal-length lens to minimize perspective e↵ects.

4.1.2 Parameter Optimization

Given our elastic model and a set of captured images, we formulate
sti↵ness parameters as the solution to a minimization problem.

Problem Formulation: Let f ⇤i be shape features captured from
the i-th test, and fi(p0, p1, ..., pn) be corresponding features gener-
ated by cloth simulation using the given planar elastic model with
24 parameters p0, p1, ..., pn, as discussed in Section 3. Our goal is
to find optimal parameters so that the di↵erence between captured

features and simulated features can be minimized:

{p0, p1, · · · , pn} = arg min
{p0 ,p1 ,··· ,pn}

TX

i=1

wi

��� f ⇤i � fi(p0, p1, · · · , pn)
��� (6)

in which T is the number of tests. In order to prevent this sum
from being dominated by greatly deformed shapes, we introduce a
fall-o↵ factor wi to decrease their influence,

wi = min
⇣
k frest � fik�1 , 106

⌘
(7)

in which frest are shape features of a resting cloth sample.

One important question here is: how are shape features defined? A
direct way is to extract the silhouette of the cloth sample as a shape
feature, since the sample only deforms in a plane. In practice, this
is prone to having errors when sample edges are not cut straight and
they can even be curly for certain cloth materials. So we manually
label image locations of wood slats and white cardboard clips, and
treat them as point features as shown in Figure 8b. Besides being
used in the error metric as described in Equation 6, features can also
be used to construct an initial cloth mesh for simulation using bi-
linear interpolation, also shown in Figure 8b. In particular, we treat
the initial cloth shape with no loads as the resting cloth mesh. Each
cloth mesh is represented by a triangle mesh over a 41⇥41 grid.

Our continuum-based cloth simulator uses the standard Finite El-
ement Method (FEM) described by O’Brien and Hodgins [1999].
The simulator is conditioned in the same way as the test. For ex-
ample, the top edge of the cloth mesh is always fixed, and its bot-
tom edge is only allowed to move in a rigid way. To simplify the
simulation, we fix feature orientations by only allowing features to
translate. Once di↵erent forces are applied in labeled connector di-
rections (shown with green arrows in Figure 8b), the cloth mesh will
reach di↵erent equilibrium shapes in the cloth simulator. Simulated
features are then used in Equation 6 to compute the error metric.

Optimization: Once both fi and f ⇤i are defined in Equation 6,
we would like to optimize parameters p0, p1, ..., pn so that the er-
ror metric can be minimized. Like other optimization systems, this
system also su↵ers from the local minima problem. Unlike other
problems, however, we observe in our experiments that the local
minima are often clustered in a small local region. Mathemati-
cally, this implies that the gradient vector provides a good clue to
the convergence when the error is still large. So we use the BFGS
extension of the Quasi-Newton method to handle the optimization
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Figure 10: Reconstructing cloth deformation from a single view and a few labelled feature points. The resulting
cloth mesh is overlaid on the image for comparison.

Figure 11: Multi-view cloth reconstruction based on the technique of Bradley et al. [2008a] (top left), was used for
garment capture in Bradley et al. [2008b] (top right), and Miguel et al. [2012] (bottom).

A good starting point for multi-view reconstruction algorithms is the Patch-based Multi-View Stereo (PMVS) ap-
proach of Furukawa and Ponce [2010]. Their method begins by matching features across multiple pictures to obtain
a sparse set of corresponding patches, which are then repeatedly expanded to spread the initial matches to nearby
pixels until a dense set of correspondences are found. This method performs well on benchmark datasets [Seitz et al.
2006; mview ], and the software is available online (http://grail.cs.washington.edu/software/pmvs/). The authors
have also extended this approach to be usable for dense motion capture from video streams of garments [Furukawa
and Ponce 2008] and faces [Furukawa and Ponce 2009].

An alternative approach is the method of Bradley et al. [2008a], which aims for both accuracy and efficiency. When
reconstructing many frames of a deforming surface, efficient runtimes are favorable. This technique has been used
for several applications of reconstructing deforming surfaces [Bradley et al. 2008b; Bradley et al. 2010; Miguel et al.

15



the third category, and thus our discussion of earlier work
focuses on other techniques using a similar approach. We
refer the reader to [33] and the MVS evaluation website [26]
for a more thorough discussion of the other techniques.

A multi-view framework for computing dense depth es-
timates was first proposed by Szeliski [37], who formu-
lates the problem as a global optimization over the unknown
depth maps. Szeliski also recovers motion estimates.

Strecha et al. [36] propose to jointly solve for depth
and visibility using a generative model, where input im-
ages are assumed to be generated by either an inlier pro-
cess or an outlier process. Depth and visibility are modeled
as a Hidden Markov Random Field in conjunction with the
Expectation-Maximization algorithm. Computation times
are comparatively low for a sparse set of viewpoints, how-
ever they do not scale well. In addition, the focus of their
work is to obtain only the depth map and outlier estimation
for each view, and so they do not discuss merging the data
to create a 3D scene.

A complimentary algorithm is presented by Zach et
al [44], which takes as input a set of depth maps and vol-
umetrically integrates them to create a 3D model using total
variation regularization and an L1 norm to measure data fi-
delity. Merrell et al. [25] also address the problem of merg-
ing depth maps to produce a 3D surface with a real-time
GPU technique. They recursively merge depth maps from
adjacent viewpoints by minimizing violations of visibility
constraints. Two different approaches are presented, one
that favors stability and one that is based on confidence. The
fused depth maps are then converted to a consistent triangu-
lar surface with a multi-resolution quad-tree.

Our work is most similar to that of Goesele et al. [16],
who showed that simple modifications to original window-
based stereo algorithms can produce accurate results. In
their algorithm, depth maps are computed by backproject-
ing the ray for each pixel into the volume and then reproject-
ing each discrete location along the ray onto neighboring
views where window-based correlation is performed with
sub-pixel accuracy. They choose only the points that cor-
relate well in multiple views, and thus reconstruct only the
portion of the scene that can be matched with high confi-
dence. Finally, depth maps are merged with an off-the-shelf
volumetric technique [8]. Although their method is simple
to implement, their models suffer from a large number of
holes and very long processing times. In contrast, our al-
gorithm is very efficient and achieves very high accuracy
combined with high density, when compared to other state-
of-the-art MVS techniques.

3. Algorithm Overview

Our multi-view reconstruction algorithm takes as input a
set of calibrated images, captured from different viewpoints
around the object to be reconstructed. We assume that a seg-

mentation of the object from the background is provided, so
that the visual hull is represented as a set of silhouette im-
ages. As mentioned in the introduction, our MVS method
is performed in two steps, binocular stereo on image pairs,
followed by surface reconstruction. Figure 1 shows a dia-
gram of the individual stages.

Figure 1. Acquisition pipeline: the binocular stereo algorithm gen-

erates a 3D point cloud that is subsequently processed and con-

verted to a triangle mesh.

The binocular stereo part of our algorithm creates depth
maps from pairs of adjacent viewpoints. We first rectify the
image pairs, and then observe that the difference in projec-
tion between the views causes distortions of the compari-
son windows. We compensate for the most prominent dis-
tortions of this kind by employing a scaled-window match-

ing technique, which improves the quality especially in high
curvature regions and for sparse viewpoints (i.e. large base-
lines). The depth images from the binocular stereo pairs are
converted to 3D points and merged into a single dense point
cloud.

The second part of the algorithm aims at reconstructing
a triangular mesh from the initial point cloud. It consists of
three steps:

1. Downsampling: The point cloud is usually much
denser than required for reproducing the amount of ac-
tual detail present in the data. Our first step is thus to
downsample the data using hierarchical vertex cluster-

ing [5, 31, 32].

2. Cleaning: The simplified point cloud remains noisy.
While some methods integrate the noise removal in the
meshing algorithm [29, 22], we believe that this im-
portant data modification must be controlled explicitly,
prior to any decision concerning the mesh connectiv-
ity.

3. Meshing: The final step is to generate a triangle mesh
without introducing excessive smoothing. We build
on lower dimensional triangulation methods [6, 18],
which are fast and run locally, ensuring scalability and
good memory-computational complexity.

In the following sections, we elaborate on the two main
steps of our algorithm.

4. Stereo Matching

The first step of our MVS algorithm involves estimating
depth maps for each camera view using binocular stereo

Figure 12: Overview of the multi-view reconstruction algorithm of Bradley et al. [2008a].

2012], and so it is a good choice for creating deformation examples for simulation. The method is performed in two
steps: binocular stereo on image pairs, followed by surface reconstruction. Since software is not available, in the
following we provide more details for the implementation of this technique.

Like most reconstruction algorithms, the input is a set of calibrated images, captured from different viewpoints
around the object to be reconstructed. A segmentation of the object from the background should be provided, so
that the visual hull is represented as a set of silhouette images. This is easy to achieve if you can capture in front of
a green screen or dark background. As we mentioned, the method is performed in two steps, binocular stereo and
surface reconstruction. Each step is broken down into individual stages, as illustrated in Fig. 12.

The binocular stereo part of the algorithm creates depth maps from pairs of adjacent viewpoints. First, image pairs
are rectified [Fusiello et al. 2000] so that each scanline in one image corresponds to exactly one scanline in the other
image. The depth of each pixel in one image is then computed by finding the corresponding pixel along the scanline
in the other image and then triangulating. Matching individual pixels can lead to many errors, so a common approach
is to match local neighborhoods instead, known as window-matching. Two local neighborhoods of N pixels v0 and
v1 can be matched using Normalized Cross Correlation (NCC):

NCC(v0, v1) =

∑N2

j=1(v0(j)− v0) · (v1(j)− v1)√∑N2

j=1(v0(j)− v0)2 ·∑N2

j=1(v1(j)− v1)2
, (7)

where v0 and v1 represent intensity averages over the neighborhoods. An NCC value of 1 indicates a perfect match,
and -1 is the worst possible match. Bradley et al. [2008a] use NCC in a robust window-matching procedure that com-
pensates for perspective distortions by matching under various non-uniform window scales. This feature improves
quality in high curvature regions (like the buckling of cloth) and for large camera base-lines (which allows for setups
with fewer cameras). The depth images from the binocular stereo pairs are converted to 3D points through triangu-
lation and simply merged into a single dense point cloud. The second part of the algorithm aims at reconstructing a
triangular mesh from the point cloud. It consists of three steps:

1. Downsampling: The point cloud is usually much denser than required for reproducing the amount of actual
detail present in the data. The first step is thus to downsample the data using hierarchical vertex cluster-
ing [Boubekeur et al. 2006].

2. Cleaning: The simplified point cloud remains noisy. While some methods integrate the noise removal in the
meshing algorithm [Kazhdan et al. 2006], others feel that this important data modification must be controlled
explicitly, prior to any decision concerning the mesh connectivity. In this reconstruction algorithm, the prob-
lem is addressed at the point level using point-based filtering tools (see [Alexa et al. 2004; Gross and Pfister
2007] for an introduction), producing a filtered point set.
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3. Meshing: The final step is to generate a triangle mesh without introducing excessive smoothing. Building on
lower dimensional triangulation methods [Boubekeur et al. 2005; Gopi et al. 2000], triangle mesh patches are
created in 2D and then ”lifted” to 3D as mini-heightfields. This approach is fast and runs locally, ensuring
scalability and good memory-computational complexity.

Here we have briefly described only two out of the multitude of multi-view stereo algorithms that have been pub-
lished (currently over 50 are evaluated at http://vision.middlebury.edu/mview/eval/). Choosing the right method for
your application can be a challenging and time-consuming process. Our hope is to provide enough background and
resources to find the best reconstruction algorithm that suits your needs.

3.3 Temporal Tracking

The geometry reconstruction algorithms from the previous section can be used to compute a triangle mesh per-frame
of the deforming surface. While it is important to obtain the time-varying shape, the full 3D deformation must
also include surface tracking, such that the 3D motion of each surface point is reconstructed. A convenient way to
represent the deformation is a triangle mesh with constant connectivity over time and varying vertex positions. In this
section we discuss different ways to perform temporal tracking and couple the result with the per-frame geometry to
obtain reconstructed surface deformations.

In this course we will focus on optical tracking, where it is assumed we have images of the deforming surface. When
images are not available, a complementary form of tracking can be used, which relies entirely on the deforming
geometry. For example, non-rigid shape registration can generate dense surface correspondences over time. A good
overview of these techniques is given in the recent Eurographics Tutorial by Wand et al. [2012]. In the remainder of
this section, we focus our discussion on image-based tracking methods.

Early work in tracking deforming surfaces was to use hand-placed markers which can be identified and tracked with
ease [Williams 1990; Guenter et al. 1998]. This idea has led to great success in marker-based facial performance
capture [Lin and Ouhyoung 2005; Bickel et al. 2008; Ma et al. 2008a], which currently drives facial animation in
the entertainment industry. For cloth, some of the first research in capturing garment motion from video has also
employed marker-based techniques [Scholz et al. 2005; White et al. 2007]. These methods use a unique encoding of
color marker arrays to locate specific points on a garment over time. Fig. 13 shows a few examples of marker-based
reconstruction and motion capture for cloth.

Scholz et al. / Garment Motion Capture Using Color-Coded Patterns

Figure 12: Eight input camera views for the same moment in time.

Figure 13: The reconstructed surface faithfully represents the cloth folds visible in the input frames.

Figure 14: Reconstruction results for the T-shirt.

Figure 15: Arbitrary texture can be applied to the reconstructed dynamic surface.

c© The Eurographics Association and Blackwell Publishing 2005.

Capturing and Animating Occluded Cloth

Ryan White†?
†University of California, Berkeley
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Figure 1: We reconstruct a stationary sleeve using thousands of markers to estimate the geometry (texture added with bump mapping).

Abstract

We capture the shape of moving cloth using a custom set of color
markers printed on the surface of the cloth. The output is a se-
quence of triangle meshes with static connectivity and with detail at
the scale of individual markers in both smooth and folded regions.
We compute markers’ coordinates in space using correspondence
across multiple synchronized video cameras. Correspondence is
determined from color information in small neighborhoods and re-
fined using a novel strain pruning process. Final correspondence
does not require neighborhood information. We use a novel data
driven hole-filling technique to fill occluded regions. Our results
include several challenging examples: a wrinkled shirt sleeve, a
dancing pair of pants, and a rag tossed onto a cup. Finally, we
demonstrate that cloth capture is reusable by animating a pair of
pants using human motion capture data.

1 Introduction
We capture the motion of cloth using multiple video cameras and
specially tailored garments. The resulting surface meshes have an
isometric parameterization and maintain static connectivity over
time. Over the course of roughly half a dozen papers on cloth cap-
ture a prevailing strategy has emerged. First, a pattern is printed on
the cloth surface such that small regions of the pattern are unique.
Next, correspondence is determined by matching regions across
multiple views. The 3D location of a region is determined by inter-
secting rays through the corresponding observations in the image
set (figure 4). Reconstruction is done independently on a frame
by frame basis and the resulting data is smoothed and interpolated.
Previous work, such as [Scholz et al. 2005], yields pleasing results.

Little work has been done to capture garments with folds and scenes
with occlusion. In this paper we use folding to refer to local phe-
nomena such as wrinkles around a knee and occlusion to refer to
large scale effects such as one limb blocking the view of another.
Folds and occlusion are common, especially when dealing with real
garments such as pants where limbs block interior views and cloth
collects around joints. Both phenomena are symptoms of the same
problem: views of the surface are blocked by other parts of the sur-
face. However, there is a distinction in scale and different methods
are required to solve each problem.

When a surface is heavily folded, contiguous visible regions are
often small and oddly shaped. In these regions correspondence is
essential for detailed reconstruction yet can be challenging to iden-
tify. We solve the correspondence problem both by improving the
pattern printed on the surface of the cloth and by improving the
method used to match regions. Our method gets more informa-
tion per pixel than previous methods by drawing from the full col-
orspace instead of a small finite set of colors in the printed pattern.
Additionally, because cloth cannot stretch much before ripping, we
use strain constraints to eliminate candidates in an iterative search
for correspondence. In combination, these two modifications elim-
inate the need for neighborhood information in the final iteration
of our algorithm. As a result, we determine correspondence using
regions that are 25 times smaller than in previous work (figure 6).

Many regions on the surface are impossible to observe due to oc-
clusion. We fill these holes using reconstructions of the same sur-
face region taken from other points in time. We found that MeshIK
([Sumner et al. 2005]), a tool originally developed for mesh pos-
ing and animation, is appropriate for filling holes in cloth. In fact,
MeshIK is well-suited to cloth data and we use it to bind recon-
struction of our pants to motion capture data.

We suggest two tools to evaluate marker-based capture systems.
The first, markers per megapixel, is a measure of efficiency in cap-
ture systems. Efficiency is important because camera resolution and
bandwidth are expensive: the goal is to get more performance from
the same level of equipment. This metric is designed to predict scal-
ing as technology moves from the research lab to the professional
studio. The second tool is information theory: we look at the pre-
dictive power of different cues in a capture system. By doing simple
bit calculations, we direct our design efforts more appropriately.

Figure 13: Marker-based motion capture methods for cloth. Left: Scholz et al. [2005], Right: White et al. [2007].

More recent research has shown that dense motion capture can be achieved in a markerless setting, if the surface
can be painted with a high-frequency texture [Furukawa and Ponce 2009; Miguel et al. 2012] or with high enough
image resolution to use fine details as surface texture [Bradley et al. 2010; Beeler et al. 2011]. Furukawa and Ponce
track face motion starting with their previous work on dense 3D motion capture [Furukawa and Ponce 2008], which
assumes tangentially rigid motion, and then introducing a new tangential regularization method capable of dealing
with the stretching, shrinking and shearing of deformable surfaces such as skin [Furukawa and Ponce 2009].

The methods of Bradley et al. [2010], Beeler et al. [2011] and Miguel et al. [2012] all rely on dense 2D optical flow
in order to compute the 3D surface motion. Optical flow is an image-space vector field that encodes the motion
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of the pixels from one frame to the next in a video sequence (see Baker et al. [2011] for a survey of techniques).
Although each reconstruction approach varies slightly in the use of optical flow for 3D tracking, the general ideas are
similar. For the purpose of notation, lets call the per-frame geometry reconstructions Gt, where t corresponds to the
frame number or time. These meshes can be the raw result of the reconstruction algorithms described in the previous
section. Given Gt and the optical flow fields of each input video, we would like to generate a set of compatible
meshes M t that have the same connectivity as well as explicit vertex correspondence. That is to say, we desire one
mesh that deforms over time. Without loss of generality, we can choose M0 to represent the global topology, and
then the goal is to track M0 forward (and possibly backwards) in time to establish the mesh sequence M t. The basic
tracking approach is illustrated on face meshes in Fig. 14, and it proceeds as follows. For each vertex vt−1

i of M t−1

we project the vertex onto each camera c in which it is visible (i.e. inside the field of view of and not occluded).
Let pi,c be this projected pixel. We then look up the 2D flow vector that corresponds to pi,c and add the flow to get
a new pixel location p′i,c. Back-projecting from p′i,c onto Gt gives us a guess for the new vertex location, which we
call v̄t

i,c.

Figure 14: Basic mesh tracking using per-camera optical flow.

The figure illustrates the 3D motion estimation for vertex vi according to one camera, c. The estimates from all
cameras can be combined in a weighted average, giving more influence to the cameras that have a better view of the
surface point:

v̄t
i =

n∑
c=1

wt
i,c · v̄t

i,c, (8)

where wt
i,c is the dot product between the surface normal at v̄t

i,c and the vector from there to c. Since each vertex
is updated independently, a regularization step avoids possible triangle-flips and removes any unwanted artifacts
that may have been present in the initial reconstruction. A common regularization approach for meshes stems from
Laplacian surface editing [Sorkine et al. 2004]. Following de Aguiar et al. [2008], we solve a least-squares Laplacian
system using cotangent weights and the current positional constraints v̄t

i . Thus, we generate the final mesh M t by
minimizing
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arg min
vt
{‖ vt

i − v̄t
i ‖2 +α ‖ Lvt − Lv0 ‖2}, (9)

where L is the cotangent Laplacian matrix. The parameter α controls the amount of regularization.

Repeatedly propagating the mesh through time using optical flow can lead to several unpleasant artifacts (illustrated
in Fig. 15). First, optical flow tracks can be lost due to occlusion. Second, it is generally well-known that optical-
flow based tracking methods suffer from accumulation of error, known as drift. Lets first consider drift. Although
the error from one frame to the next is usually small and imperceptible, the error can accumulate over time, resulting
in incorrect motion estimation. Drift typically occurs because optical flow is computed between successive video
frames only. If it were possible to accurately compute flow between the first video image and every other frame,
there would be no accumulation of error. Unfortunately, most temporally distant video images in a capture sequence
are usually too dissimilar to consider this option. Bradley et al. [2010] and Beeler et al. [2011] present two different
solutions to this problem.

Figure 15: Two problems that can happen when using optical flow with sequential propagation. 1) Tracks can be
lost due to occlusions, and 2) Small errors can accumulate over time and cause drift.

Bradley et al. [2010] compute a 2D parameterization of the surface (or a UV-map) and then build per-frame texture
images from the input videos. Two example texture images are given in Fig. 16. Every vertex of the mesh has
unique 2D coordinates in the parameter domain, yielding a one-to-one mapping between 2D and 3D mesh triangles.
Their main observation is that the texture domain of the mesh remains constant over time, which means that the
computed per-frame texture images are all very similar. Any temporal drift in the 3D geometry appears as a small
2D shift in the texture images, which can easily be detected, again by optical flow. Automatic drift correction is
then implemented as follows. After computing the geometry M t and texture T t for a given frame, optical flow is
computed between the textures T 0 and T t . This flow (if any is detected) is then used to update M t on a per-vertex
basis using the direct mapping between the geometry and the texture. Any shift in texture space becomes a 3D shift
along the mesh surface. After updating the vertices to account for drift, Laplacian regularization is applied to avoid
possible triangle flips.

Beeler et al. [2011] take a different approach to eliminating drift in the reconstructed sequence. Leveraging the
fact that facial performances often contain repetitive subsequences, their method identifies so-called anchor frames
as those which contain similar facial expressions to a manually chosen reference expression. Anchor frames are
automatically computed over one or even multiple performances. This method introduces a robust image-space
tracking method that computes pixel matches directly from the reference frame to all anchor frames, and thereby
to the remaining frames in the sequence via both forward and backward sequential matching. This allows the
propagation of one reconstructed frame to an entire sequence in parallel, in contrast to the previous sequential
methods. This anchored reconstruction approach limits tracking drift, since every anchor frame brings the tracking
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Figure 10: Texture results for two different frames, including refer-
ence images.

optical flow can fail during very fast motion such as rapid mouth de-
formations, and minor inaccuracies can accumulate over time lead-
ing to temporal drift. We resolve these problems automatically by
enhancing the basic technique with an explicit mouth tracking al-
gorithm, along with a method for detecting and correcting temporal
drift.

5.4.1 Mouth Tracking

To perform automatic mouth tracking, we introduce positional con-
straints for a sparse set of points around the mouth at each time
step. The positional constraints are computed in image-space, and
thus do not map directly to mesh vertices. Instead, they are incor-
porated as barycentric constraints on mesh triangles.

The constraint points are determined by tracking the mouth in a
single camera (either one of the two green cameras in Figure 4).
We perform edge detection [Canny 1986] on each frame within a
user-specified region-of-interest (ROI). The region should contain
the mouth throughout the sequence but avoid other edges caused
by surrounding wrinkles or the silhouette of the face. If the se-
quence contains too much global face motion to contain the mouth
in a single ROI then mouth tracking can be performed in temporal
segments with different ROIs. For each frame we perform a sim-
ple analysis of the detected edges to locate the mouth. Figure 11
shows a few different frames of mouth tracking. Detected edges
are shown in white, and the ROI is indicated by the blue rectangle.
If we consider the image as a set of rows and columns, we start by
choosing the two corners of the mouth (shown as red points) as the
minimum and maximum columns that contain an edge pixel. We
then detect the top and bottom lips by uniformly sampling a sparse
number of columns between the mouth corners, and selecting the
minimum and maximum rows at each column that contain edge pix-
els (shown as green points). Empirically we found that 30 sample
columns were sufficient. These 62 pixels then become the mouth
constraints for this frame. We process each frame in the same man-
ner, yielding an explicit temporal correspondence between each of
the individual constraints. Since edge detection is notoriously un-
stable, we smooth the constraints both spatially and temporally to
remove outliers. Although our mouth tracking technique is rather
simple, we found the results to be quite robust, as we show in the
bottom row of Figure 11.

Figure 11: Mouth tracking through edge detection. The green and
red points become constraints in geometry tracking.

We back-project the constrained pixels into the reference frame
M0 to determine the set of constraint mesh triangles and the corre-
sponding barycentric coordinates for each of the mouth constraint

points. We encode the barycentric coordinates in a sparse matrix
B which has similar structure to the Laplacian matrix, except that
it contains rows only for vertices that are adjacent to a constraint
triangle. Let P 0 be the set of 3D constraint points determined from
the back-projection, then

P 0 = Bv0. (5)

Throughout the sequence B remains fixed. The per-frame mouth
constraints are used to compute 3D constraint points P t by back-
projecting onto the initial reconstructions Gt. The mouth con-
straints guide the regularization from Section 5.2, replacing Equa-
tion 4 with

arg min
vt

{k vt
i � v̄t

i k2 +↵ k Lvt � Lv0 k2 +� k Bvt � P t k2},
(6)

where � controls how much we constrain the mouth. We use a high
weight, � = 104, since the mouth can deform quite rapidly, causing
large errors in the basic optical flow approach. Our mouth tracking
procedure alleviates these errors, and thus is an essential part of our
method for generating realistic facial animations.

5.4.2 Drift Correction

It is well-known that optical-flow based tracking methods suffer
from accumulation of error, known as drift [DeCarlo and Metaxas
2000; Borshukov et al. 2003]. DeCarlo and Metaxas [1996] solve
this problem by combining optical flow with edge information, and
Borshukov et al. [2003] rely on manual intervention. A key feature
of our method is that we are able to detect and correct drift in the
3D animation automatically, using the texture domain of the faces.

Drift typically occurs because optical flow is computed between
successive video frames only. If it were possible to accurately com-
pute flow between the first video image and every other frame, there
would be no accumulation of error. Unfortunately, temporally dis-
tant video images in a capture sequence are usually too dissimilar
to consider this option. In our case, however, the texture domain of
the mesh remains constant over time, which means that the com-
puted per-frame texture images are all very similar. Any temporal
drift in the 3D geometry appears as a small 2D shift in the texture
images, which can easily be detected, again by optical flow.

To incorporate drift correction, we employ a simple modification to
the basic tracking method described in Section 5.2. After comput-
ing the geometry M t and texture T t for a given frame, we compute
optical flow between the textures T 0 and T t. This flow (if any is
detected) is then used to update M t on a per-vertex basis using the
direct mapping between the geometry and the texture. Any shift in
texture space becomes a 3D shift along the mesh surface. After up-
dating the vertices to account for drift we apply regularization again
(Equation 6), to avoid possible triangle flips.

The only problem that remains is that, if significant appearance
changes such as wrinkles have occurred in the current frame, op-
tical flow between T 0 and T t can fail, resulting in large flow errors.
However, since we expect drift to appear gradually, the flow be-
tween T 0 and T t should never be more than a few pixels. Larger
flow vectors are discarded as outliers. Still, face regions that con-
tain these appearance changes may incur drift, as wrinkles can be
present for a significant number of frames. In these regions, we de-
tect drift more locally by computing the flow between T t�k and T t,
and updating the geometry accordingly. We choose k to be small,
so that both frames (t � k) and t contain similar appearance, such
as the same wrinkles, allowing flow to be computed accurately. On
the other hand, k must be large enough so that drift can accumulate
and be detected. In all reconstructions, we found that k = 5 was an

Figure 16: Example face textures from Bradley et al. [2010]. Notice that the parameterization domain is constant
even though the 3D face and expression changes. The only change in the textures is due to wrinkles and appearance.

error back to (nearly) zero. The idea of using anchor frames also helps to overcome additional problems with
sequential motion tracking, and that is occlusion and motion blur. Sequential tracking methods would fail during an
occlusion or blurred frame, thus losing track of the surface and would not be able to recover. As a result, the motion
for the remainder of the performance would not be reconstructed. The anchor frame reconstruction framework can
recover from such tracking failure, as long as an anchor frame exists later on in the sequence. The main drawback of
the anchor frame approach is that it is designed specifically for deformation sequences that return to a similar pose
often throughout the sequence. With arbitrary non-cyclic deformations, you may not experience the benefits of this
algorithm.

Resulting facial performance reconstructions using the methods of Bradley et al. [2010] and Beeler et al. [2011] are
shown in Fig. 17 and Fig. 18, respectively. Each figure shows a reference image, the reconstructed geometry, and
the reconstructed motion illustrated with a grid overlaid on the deforming surface.

Figure 18: Capture results for one sequence including the reference footage (top row), pure geometry result (2nd row), skin stretch visual-
ization (3rd row), high-quality rendering with texture (4th row), and virtual makeup (bottom row).

Figure 19: Realistic renderings under various different illuminations and viewpoints.

Figure 17: Deforming face reconstructions from Bradley et al. [2010]. The top row is a reference image, middle
row shows the resulting geometry, and bottom row shows the reconstructed motion using an overlaid checkerboard
pattern.
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Figure 5: Example frames taken from multiple different sequences of an actor. Top row: the images from one camera. Row 2: computed
geometry. Row 3: geometry rendered with a grid pattern to enable a qualitative evaluation. Row 4: rendering of the computed mesh. In this
figure, a single reference frame was the basis for processing multiple sequences of the actor, so the computed meshes are consistent (i.e. have
corresponding mesh vertices) across all of the results.

tracking of the upper lip fails, the system incorrectly predicts that
the motion of the upper lip drifts down onto the lower lip, indicated
by the overlaid grid. Sequential tracking methods would have trou-
ble recovering from this situation. However, due to an anchor frame
later in the sequence, our method is able to successfully track the
upper lip backwards from the anchor frame to the occluded frame,
automatically restoring tracking after the occlusion.

The combination of robust image space tracking and anchor frames
allows us to successfully reconstruct very fast motions, even those
containing motion blur. We demonstrate this in Figure 9, which
contains a short sequence of an actor opening his mouth very
quickly, and we compare our result again to the method of Bradley
et al. Our method is able to produce a more accurate reconstruction.

Analysis. Here we assess the behavior of our algorithm under
varying numbers of anchor frames. This assessment, depicted in
Figure 10, demonstrates that our algorithm is relatively insensitive
to the number of anchor frames, when present in typical amounts.
For this analysis we ran our tracking method 9 times on the same
sequence, using the same reference frame but varying the anchor
frames. The sequence consists of 400 frames and contains a number
of expressive as well as neutral poses, as illustrated by the images

at the bottom of the figure. In 4 of the executions the anchor frames
are manually selected (with 1, 3, 5 and 8 anchors), and in the other
executions they are automatically selected based on the matching
error (which is graphed in the background in purple); these 5 exe-
cutions chose anchor frames that had the highest 10, 25, 50, 75 and
100 percentile matching error. At the low end, with only 1 anchor
frame, we expect drift to accumulate since tracking is sequential
(as in previous methods). At the high end, with 100% anchors, the
method should degenerate completely because there is no frame-to-
frame tracking at all. However, with a reasonable number of anchor
frames we expect the results to be stable. We have no ground truth
for measuring the difference between executions, so we chose the
result with 8 anchors as the baseline for comparison. These an-
chor frames approximately partition the sequence into individual
expressions bounded by neutral poses, which is exactly the situa-
tion where we expect our method to perform best. For each other
result sequence, we measure the average image-space tracking er-
ror for each frame in pixels, compared to the baseline result, and
accumulate the error across the sequence. This accumulated error
is shown in the horizontal bar chart on the right side of the figure.
As expected, using only 1 anchor frame produces significant error
due to drift accumulation. When the number of anchor frames is
very high the error is also large because many frames do not match

Figure 18: Deforming face reconstructions from Beeler et al. [2011]. The top row is a reference image, middle row
shows the resulting geometry, and bottom row shows the reconstructed motion using an overlaid grid pattern.

While these tracking methods have been described in the context of facial performance capture, similar tracking
methods can be applied to any smooth deforming surface. The deformation examples in the data-driven cloth simu-
lation work of Miguel et al. [2012] were reconstructed using the same techniques.

3.4 Actuation and Forces

So far we have discussed different physical capture setups and various methods for 3D reconstruction of shape
and motion tracking for deforming surfaces. In order to capture examples for simulation, we often have additional
requirements. First, we should have complete control of the surface in order to actuate very specific deformations.
Secondly, we must reconstruct the forces that act on the surface and measure the complete answer that should be
predicted by a simulator. These additional challenges often lead to additional capture hardware and specialized
reconstruction algorithms. In this section we will outline some of the physical setups and algorithmic approaches
that have been used to acquire this additional information.

Bickel et al. [2009] acquire a set of example deformations of real objects, such as soft pillows and faces, including
force information using a simple capture system. Their acquisition system consists of force probes and a marker-
based reconstruction (see Fig. 19). Deformations are induced by physical interaction with the object, meeting the
requirement of having complete control of the surface. The second requirement (reconstructing forces), is met by
building contact probes with arbitrary shapes and circular disks of different diameters attached to the tip of a long
screwdriver. The position and orientation of the contact probe is estimated using two makers on the white shaft of
the screwdriver. To measure the magnitude of the contact forces, a force sensing resistor is used.

Wang et al. [2011] devise a setup for measuring in-plane cloth deformations using weights to create specific forces
(see Fig. 20). A piece of cloth is mounted vertically, with the top and bottom edges sandwiched between a pair of
wooden slats to constrain the motion in a controlled way. The left and right edges of the cloth are attached to clips
in the middle of each edge. These locations are treated as boundary conditions and their positions can be easily
measured using a calibrated camera. Wires are attached to the clips and then weights are attached to the other end of
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Figure 7: Comparing real (top) and modeled (bottom) deformations with a different contact probe than the one used in the data acquisition
phase.

measured ours linear co-rotational

Figure 8: Comparison of deformations using our method vs. an
average-fit linear co-rotational model.

used during data acquisition. Fig. 7 shows a side-by-side compari-
son of our model (bottom) to real deformations (top) using a differ-
ent contact probe than the circular one we used for data acquisition.
We captured the applied force with the new contact probe, and then
distribute it uniformly in the simulated setting. The figure shows
high correspondence between the real and simulated scenarios. We
refer the reader to the accompanying video for an animated side-
by-side comparison.

To evaluate the sensitivity of our capture and modeling approach
to measurement noise we created example deformations of a vir-
tual block with three layers of user-defined non-linear materials.
We then evaluated the accuracy
in matching these deformations
with our model under differ-
ent levels of noise in the in-
put data. Specifically, we ap-
plied Gaussian noise with a vari-
ance of 10%, 20% and 30%
to the input displacements and
then measured the L2 error for
all deformations and error lev-
els. On average, we obtain an
error of 0.3% of the maximum displacement for the case without
error, and 2.1%, 3.1% and 4.4% for the cases with 10%, 20% and
30% input noise, respectively.

Fig. 9 shows a pillow object with heterogeneous behavior even in its
rest state. The screenshots compare the captured deformations with
the deformations of the 1, 691 tetrahedra model synthesized with
our algorithm. The figure also shows screenshots of deformations
at interactive frame rates of about 10 Hz on a standard PC.

Facial Deformation. We have also applied our soft-tissue capture
and modeling technique to the challenging task of facial deforma-
tions, as shown in Fig. 10. We have modeled the facial tissue with a
single layer of 8, 261 tetrahedra that are attached to a low-resolution
skull model. To model the sliding contacts between the tissue and
the skull we use the same contact handling as for the probe object
(see Section 3.4). Given the deformation of the tetrahedral mesh,
we compute the deformation of a high-resolution triangle mesh us-
ing a smooth embedding based on moving least squares interpola-
tion like Kaufmann et al. [2008].

Note that our face model does not correctly capture all types of de-
formations because we use a model with closed lips, and all the
deformation examples in the training dataset were captured with
relaxed muscles and closed jaw. Nevertheless, the model is able to
produce compelling deformations even without anatomically cor-
rect modeling of the musculoskeletal structure of the face.

7 Discussion

We have presented a novel data-driven method for modeling non-
linear heterogeneous soft tissue. The major practical contribution
of our work is the ability to model rich non-linear deformations in a
very simple manner, without the complex task of carefully choosing
material models and parameters. Instead, our data-driven method
relies on a simple-to-build acquisition system, a novel representa-
tion of the material through spatially varying interpolation of fitted
linear models, and a simple deformation synthesis method.

Our work suggests a highly innovative approach to non-linear mate-
rial modeling, but it also suffers from limitations. Due to its formu-
lation, our technique is currently limited to capturing elastic proper-
ties. A fully dynamic simulation of soft tissue would require captur-
ing other properties such as viscosity and plasticity. One interesting
conclusion of our work is that it is often possible to obtain com-
pelling surface deformations with a volumetric meshing unaware of
an object’s actual volumetric structure. This is of course not valid
for all situations. For example, our face model could be greatly
enhanced with accurate lip contact and jaw motion models.

There are several aspects of our model that deserve further explo-
ration. One of them is its ability for capturing anisotropic behavior.
The underlying linear co-rotational material model that we use for
representing deformation samples can only capture isotropic behav-
ior, but deformation samples with the same total strain but in differ-
ent directions will lead to anisotropic behavior. In other words, we
locally model the material isotropic in strain space, yet strain-space
interpolation of material parameters provides global anisotropic be-
havior. It is worth exploring to what extent our approach captures
anisotropy.

Figure 9: Two left-most columns: Comparisons of captured and synthesized deformations for a heterogeneous non-linear pillow. Right
column: Interactive deformations of the model produced by pushing (top) and pulling (bottom).

Figure 10: Left: Capture of facial deformations; Middle: Synthesized deformations for the captured examples; Right: Frames of an animation
with a cylindrical probe pressing on the cheek.

Figure 9: Two left-most columns: Comparisons of captured and synthesized deformations for a heterogeneous non-linear pillow. Right
column: Interactive deformations of the model produced by pushing (top) and pulling (bottom).

Figure 10: Left: Capture of facial deformations; Middle: Synthesized deformations for the captured examples; Right: Frames of an animation
with a cylindrical probe pressing on the cheek.

Figure 9: Two left-most columns: Comparisons of captured and synthesized deformations for a heterogeneous non-linear pillow. Right
column: Interactive deformations of the model produced by pushing (top) and pulling (bottom).

Figure 10: Left: Capture of facial deformations; Middle: Synthesized deformations for the captured examples; Right: Frames of an animation
with a cylindrical probe pressing on the cheek.

Figure 19: The capture setup of Bickel et al. [2009] uses force probes and marker-based reconstruction to acquire
example deformations of real objects.

the wires over pulleys in order to apply tension. The top edge of the cloth sample is attached to the top of the testing
board, while the other three edges have freedom to move. Different weights are applied on these three edges in order
to drag the cloth sample into different shapes. The left and right sides are loaded with the same weights so that the
sample does not lose its balance during the experiment. This is a simple mechanism to control the magnitude of the
force applied to the cloth, and is attractive since the setup is inexpensive and no specialized hardware is required.

Miguel et al. [2012] designed a more elaborate acquisition system for cloth that explores a substantial range of the
materials strain space, and records complete information about the forces applied to the cloth and the deformation
that it undergoes. Like Wang et al. (and previous work), this setup focuses primarily on tensile forces. Tests are
performed on 100 mm square cloth samples using two kinds of plastic clips: small, rounded clips that grab a localized
area, and long clips that grip one whole side of the sample. Forces are applied to the clips by fine wire cords that are
pulled to defined displacements by eight linear actuators, and the tension in the cords is monitored by miniature load
cells located at the actuator ends (see Fig. 21). Using the reconstruction methods described previously, the geometry
and motion of the cloth is captured. The location and orientation of the cords attached to the clips (which reveal the
direction of the applied force) are also reconstructed, by fitting 3D lines to reconstructed points along each cord (see
Fig. 22). This system, although more complex to construct than that of Wang et al., is able to produce

• The 3D configuration of the cloth sample, represented as a deformed mesh with 10K regularly sampled ver-
tices.

• The 3D positions and orientations of all clips attached to the cloth, including a list of clamped cloth vertices.

• The 3D forces applied to all clips. The magnitudes are determined by the tension measurements, and the
directions are determined by the observed directions of the cords.

Note that the actuator positions themselves are not part of the output, since they are superseded by the displacements
measured at the clips. This prevents stretching of the cord, or other factors affecting the distance between the clip
and the actuator, from affecting displacement accuracy.
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Figure 5: The bending angle and its neighboring triangles.

in a twill structure. Fortunately, our experiments show that an elas-
tic model under the orthotropic assumption still can approximate
the strain-stress relationship of denim well. Although we did not
find such cases in our experiments, for cloth materials that greatly
conflict with this assumption, we can use all 6 parameters of the
sti↵ness tensor C in equation 1 (instead of the four parameter ap-
proximation in equation 2), and use more data points to sample the
strain angle ' from 0� to 180� in the polar space.

3.2 Bending Model

Our piecewise linear bending model is extended from the bending
force equation by Bridson and his colleagues [2003]:

Fi = k sin(✓/2) (h1 + h2)�1 |E| ui (4)

for i=1,...,4, in which E is the edge vector, Fi is the bending force
applied on the i-th vertex, h1 and h2 are the heights of two trian-
gles, ui is a vector defined for the i-th vertex, and k is the mesh-
independent bending sti↵ness coe�cient. Figure 5 shows the con-
figuration of the bending angle and its neighborhood. As with
stretching, we consider a piecewise-linear curvature-force relation-
ship, and simply define k as a piecewise linear function k(↵) using
a mesh-independent variable ↵:

↵ = sin(✓/2)(h1 + h2)�1 (5)

The variable ↵ approximates half of the curvature in a simple fash-
ion, using sin(✓/2) and (h1 + h2)�1, since they are already calculated
for Equation 5 and do not introduce extra computational cost. So
far the model in Equations 4 and 5 is isotropic since it does not
consider any bias angle. To make the model anisotropic, we sample
the angle space, construct the piecewise linear elastic model sepa-
rately for each orientation, and define the complete model by linear
interpolation in the polar space spanned by the angle and ↵.

Our experience shows that using five data points to sample ↵ can
approximate the bending behaviors well without overfitting. In to-
tal we use 15 data points for three samples of each cloth material.
Figure 6 plots the estimated bending sti↵ness curves for a Pink Rib-
bon Brown material. The parameters are fit using the optimization
framework that will be discussed later in Section 4. This graph
shows that the bending sti↵ness relationship is di↵erent when the
bias angle changes.

4 Measurement

The planar model proposed in Section 3.1 requires 24 parameters
and the bending model proposed in Section 3.2 contains 15 pa-
rameters. With this number of material parameters it is imprac-
tical to manually adjust them in order to match the model to a
specific cloth material. Instead, we propose a measurement and
optimization framework that allows us to model sti↵ness parame-
ters automatically from captured cloth behaviors. In this section,
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Figure 6: Bending sti↵ness curves of a Pink Ribbon Brown cloth
material.
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Figure 7: The experiment setup for stretching tests. For each mate-
rial, a set of three cloth samples with di↵erent bias angles are tested
in the experiment. Images copyright Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi.

we describe our measurement setup to determine those parameters.
We conduct a separate set of measurements for stretching (4.1) and
bending (4.2). Compared with existing data-driven techniques, our
system is easy and inexpensive to build and configure. It does not
completely isolate each parameter as would be required for direct
measurement, but it generates test configurations that are controlled
enough to enable the sti↵ness parameters to be fit within a simple
optimization framework using well-defined features in the observed
cloth samples.

4.1 Stretching Measurement

Our stretching measurements are made using a novel experimental
setup, with parameters fit using optimization. The objective of this
setup is not to isolate individual material properties. Instead it cre-
ates controlled and measurable configurations that can be used as
targets for optimization.

ACM Transactions on Graphics, Vol. 30, No. 4, Article 71, Publication date: July 2011.

Figure 20: The capture setup of Wang et al. [2011] uses weights to control cloth deformations by applying specific
forces to a cloth sample at various attachment points.

These are just a few examples of physical setups that have been used to generate controlled deformation and measure
the forces in addition to the deforming geometry.

3.5 Deformation Examples

We conclude this section with some hints on what deformation examples might make sense to capture, and point to
data that is already available online.

The types of interesting deformations depends on the object you are capturing, and of course on the application you
have in mind. For cloth, it has been a popular idea to isolate specific stretching and bending deformations. Wang
et al. [2011] follow the biaxial tensile method in the textile literature, which tests the cloth sample by stretching it
simultaneously in both warp and weft directions. Using the setup described previously (recall Fig. 20), a number
of stretching tests are performed. For cloth materials with symmetric properties to their warp and weft directions,
they create three 400mm x 400mm cloth samples with bias angles 0◦, 45◦ and 90◦ respectively. The bias angle
is defined as the rotational angle from the warp-weft coordinate system to the samples local coordinate system
counterclockwise. Warp and weft directions can be recognized from thread directions in the weaving structure for
most cloth materials. Each sample is typically tested by seven different weights at the bottom, going from 0g to
600g, and five weights on both sides, from 0g to 400g. In total, there are 35 tests for each sample and 105 tests for
each cloth material. This test set covers the range of forces typically experienced by the cloth in clothing when it is
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Figure 2: Acquisition setup for the measurement system.

wire cords that are pulled to defined displacements by eight
linear actuators, and the tension in the cords is monitored
by miniature load cells located at the actuator ends (see Fig-
ure 2). Our actuators and load cells are capable of applying
and measuring tensions up to 45 N, but in our experiments
the maximum force is typically on the order of 10 N.

The geometry of the cloth sample and the attached clips
is monitored by a vision system composed of four high-
resolution cameras. The location and orientation of the cords
attached to the clips (which reveal the direction of the ap-
plied force) are also tracked. Each output frame of a mea-
surement session contains:

• The configuration of the cloth sample, represented as a
deformed mesh with 10K regularly sampled vertices.

• The positions and orientations of all clips attached to the
cloth, including a list of clamped cloth vertices.

• The forces applied to all clips. The magnitudes are de-
termined by the tension measurements, and the directions
are determined by the observed directions of the cords.

Note that the actuator positions themselves are not part of
the output, since they are superseded by the displacements
measured at the clips. This prevents stretching of the cord,
or other factors affecting the distance between the clip and
the actuator, from affecting displacement accuracy.

3.1. Reconstruction

Our vision system recovers the space-time geometry of the
deforming cloth and attached rigid clips, as well as the di-
rections of the forces applied to the clips.

Initialization. The cloth sample starts flat on a table and
we capture the rest pose without applied tensile forces. This
initial frame serves to compute the geometry of the cloth
without any occlusion from clips. We then attach the clips,
and the measurement process continues automatically, fol-
lowing a defined script of actuations, and recording images

Cloth Sample Id Mass (g)

cotton satin #4 1.2
rayon/spandex knit #12 3.1
cotton denim #14 4.6
wool/cotton blend #18 2.4

plastic clips (3 sizes) 1.9, 10.1, 13.3

Table 1: Cloth and attachment clip masses.

and forces. We typically deform the cloth by moving the ac-
tuators at 0.5 mm/sec and capture a frame every 2 seconds.

Cloth Geometry Reconstruction. The raw data for a single
deformation consists of 20 to 200 individual measurement
frames, with a set of camera images and simultaneous force
sensor readings for each frame.

We compute the per-frame geometry using a state-of-
the-art stereo reconstruction technique [BBH08], which
was specifically tailored for reconstructing cloth geome-
try [BPS⇤08]. If the inherent texture of the cloth is not
sufficiently random, it is printed with a wavelet noise pat-
tern [AIH⇤08] to provide texture that can be used for stereo
reconstruction and tracking. The pattern is printed with a
flatbed inkjet printer and does not have a noticeable effect
on the material behavior.

To represent inter-frame correspondence, we use opti-
cal flow to obtain a single triangle mesh that deforms over
time, akin to the human face tracking method of Bradley
et al. [BHPS10]. To start, the cloth vertices in the rest pose
frame (frame 0) are projected onto the input images, where
optical flow predicts the projection of each vertex at the next
time step. Back-projecting onto the reconstructed geometry
for the next frame gives new position estimates for the cloth
vertices. The process is then repeated using the result from
frame n to obtain frame n + 1. As with all sequential track-
ing methods, very small errors can accumulate over time and
cause temporal drift in the reconstruction. To avoid drift, we
subsequently match each frame independently back to the
rest pose frame using the approach described in Bradley et
al. [BHPS10]. The final solution is smoothed using Lapla-
cian regularization to remove noise.

Tracking Clips and Cords. In order to measure the com-
plete answer that a simulator should predict, we need to de-
termine the interaction between the rigid clips, the cloth,
and the cords. The clips are produced, using rapid proto-
typing, with embedded codes [Fia05] that allow us to deter-
mine their identity, position, and orientation automatically.
The area of cloth occluded by the clips is used to automat-
ically determine which cloth vertices are clamped by each
clip and will therefore be constrained to it in the simulator.

The vision system also finds the cords in the images and
triangulates a 3D line for each cord. A few user scribbles
on an input image indicate which cords are affecting each

c� 2011 The Author(s)
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Figure 21: The acquisition setup of Miguel et al. [2012] is designed to produce a variety of controlled deformations
through the use of actuators, wires, pulleys and force sensors. Miguel et al. / Data-Driven Estimation of Cloth Simulation Models
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Figure 3: Force measurements for selected frames of a cor-
ner pulling sequence. Forces are rendered as red vectors
with magnitudes proportional to their values (in Newtons).

clip. Figure 3 illustrates the force measurements and clip lo-
cations for three different frames from one experiment. The
forces are rendered as red vectors with lengths proportional
to the force magnitudes.

3.2. Measurements

The set of deformations to measure is motivated by the goals
of the parameter fitting stage (Section 5): to fit model pa-
rameters for stretch, shear and bending that best describe the
cloth, and to validate the parameter fits by comparing against
other measurements.

To reduce the risk of falling into local minima during
parameter fits, we have designed deformation sequences
that produce near-isolated strains, and allow estimating
stretch, shear and bending properties in a separate and in-
cremental manner. Unlike standard textile evaluation prac-
tices [Kaw80], we relax the requirement of uniform strains.
To isolate stretching we perform a uni-axial tension experi-
ment, with forces applied to two long bar clips attached to ei-
ther side of the cloth (see Figure 4, 2nd column). The cloth is
slowly stretched until a maximum force is reached and then
slowly released back. The process is repeated three times, in
both weft and warp directions separately.

Shearing is captured using an approximate picture-frame
experiment [Cul79], where four long clips fix the cloth
boundaries and shear stress is applied as the cords pull on
opposite corners (Figure 4, 3rd column). To isolate bend-
ing deformation we slowly push the flat cloth sample off
the edge of a table and measure its shape as it bends un-
der its own weight (Figure 4, 4th column), for both weft and
warp directions. Thus we have a total of five measurements
per cloth sample that will be used for parameter fitting (two
stretch, one shear, and two bending).

We also capture two sequences with more complex defor-
mation (Figure 5) for validation after parameter fitting. In
the first test, opposite edges of the cloth are pulled in op-
posite directions, causing shearing and buckling (Figure 5,
top). The second is a four-corner pulling test, where oppo-
site pairs of corners are pulled in alternation, resulting in
diagonal wrinkles (Figure 5, bottom).

Figures 4 and 5 show that our acquisition system is able
to recover the 3D cloth geometry including temporal track-
ing (illustrated with an overlaid checkerboard), tracked 3D

Figure 4: Selected frames from isolated measurements of
stretching, shearing, and bending. The left column shows the
cloth in its rest state. One input image is shown above each
3D reconstruction. The reconstruction includes parameter-
ized cloth geometry, clip locations and the direction of the
force vectors (shown as green lines).

Figure 5: Selected frames from more elaborate manipula-
tion of the cloth, demonstrating complex deformation behav-
ior. The right column is rendered from a different viewpoint.

clip locations, and individual 3D force directions (shown as
green lines). To our knowledge, our method presents the first
system able to record such extensive information about the
behavior of a cloth sample.

3.3. Accuracy

In the vision system, the camera calibration accuracy is
within 0.3 pixels, or about 0.075 millimeters at the distance
of the cloth. The multi-view stereo algorithm of Bradley et
al. [BBH08] is among the most accurate available accord-
ing to the Middlebury evaluation benchmark. It is difficult to
quantify the accuracy of the temporal flow computation, but
it can be visualized by compositing the reconstructed defor-
mation on top of the input images (see accompanying video).

The raw repeatability of our force sensors is about 3
millinewtons (RMS). The largest source of error in measur-
ing the force indirectly through the cord is the internal fric-
tion in the cord as it bends around the pulleys, which intro-
duces an artificial hysteresis of about 0.1 N.

4. Cloth Models

Our goal is to study the fidelity of constitutive models of
cloth—models that predict the forces produced in the cloth

c� 2011 The Author(s)
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Figure 22: Force measurements from the setup of Miguel et al. [2012].

worn. Cloth bending is also measured, by clamping a sample in a bent position. A sample is incrementally advanced
so that progressively more of it protrudes from the clamp, and the sample drapes into different curves under its own
weight. These curves are captured from a side view and the trajectory of each curve is manually labeled using point
features.

Motivated by the goal of parameter fitting, Miguel et al. [2012] designed deformation sequences of cloth that pro-
duce near-isolated strains, and allow estimating stretch, shear and bending properties in a separate and incremental
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manner. Unlike standard textile evaluation practices, they relax the requirement of uniform strains. Using the setup
described previously (recall Fig: 21), stretching is isolated by performing a uni-axial tension experiment, with forces
applied to two long bar clips attached to either side of the cloth. The cloth is slowly stretched until a maximum
force is reached and then slowly released back. The process is repeated three times, in both weft and warp directions
separately. Shearing is captured using an approximate picture-frame experiment, where four long clips fix the cloth
boundaries and shear stress is applied as the cords pull on opposite corners. Similar to Wang et al., to isolate bending
deformation they slowly push the flat cloth sample off the edge of a table and measure its shape as it bends under its
own weight, for both weft and warp directions. However, here Miguel et al. measure 3D bending rather than a 2D
curve. This gives a total of five measurements per cloth sample that are used for parameter fitting (two stretch, one
shear, and two bending). Additional, more complex, deformations are also captured for validating their algorithm.

These experiments on cloth all aim to capture the full strain-space of the material. If instead you are working with
faces, it is not as easy to isolate the different modes of deformation. However, a lot of work has focused on defining
a representative set of facial expressions, from which many new expressions can be formed. A standard set of
expressions has been defined in the Facial Action Coding System (FACS) of Ekman [1978].

Finally, since it can be a difficult task to capture real deformation examples for simulation, here is a short list of
datasets that are already available online:

• Cloth datasets of Wang et al. [2011] are available at
http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/

• Example garment capture sequences of Bradley et al. [2008b] are available at
http://www.cs.ubc.ca/labs/imager/tr/2008/MarkerlessGarmentCapture/data.html

• Facial performance capture data of Bradley et al. [2010] is available at
http://www.cs.ubc.ca/labs/imager/tr/2010/Bradley SIG2010 FaceCapture/

• An example facial performance from Beeler et al. [2011] can be requested from
http://graphics.ethz.ch/publications/papers/paperBee11.php

• Datasets of articulated mesh animations of people from the work of Vlasic et al. [2008] can be obtained from
http://people.csail.mit.edu/drdaniel/mesh animation/index.html

• Finally, similar datasets from the work of de Aguiar et al. [de Aguiar et al. 2008] can be requested at
http://www.mpi-inf.mpg.de/resources/perfcap/
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4 Modeling Nonlinear Soft Tissue from Captured Mechanical Data
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Motivation

Acquire and model 
deformation behavior

Challenges

stiff

soft

Material
Heterogeneity

Material
Non‐linearity



Goals

• Non‐linear heterogeneous soft tissue

– Simple method

– Easy and robust fit

– Reproduce deformation behavior

– Interactive performance

Our Approach

SynthesisAcquisition

Material

Linear
Material

Analysis

Parameter
Fitting

Nonlinear
Interpolation

FEM
Simulation



Related Work (I)

• Bio‐mechanical Models
Neo‐Hookean, Mooney‐Rivlin, 
Ogden,  Rubin‐Bodner, …

Heterogeneous

Non‐linear 

Model and parameters 
are difficult to choose

[Sifakis et al. 2005]

[Teran et al. 05] [Lee et al. 09]

Related Work (II)

• Bio‐mechanical Models

• Measurement‐based
Green’s function [Pai et al. 01], 
[Lang et al. 02], [Lang et al. 03] 
Viscoelasticity [Schoner et al. 04]

Heterogeneous

Linear 

[Pai et al. 01]

[Schoner et al. 04]



Related Work (III)

• Bio‐mechanical Models

• Measurement‐based

• Constitutive model fitting
[Schnur and Zabaras 92], 
[Kauer at al. 02],
[Becker and Teschner 07]

Force 
Displacement

Overview

SynthesisAcquisition

Material

Linear
Material

Analysis

Parameter
Fitting

Nonlinear
Interpolation

FEM
Simulation



Data Acquisition

3 Canon 40D cameras
External trigger for sync

Contact probe

PhigetInterfaceKit with
force sensing resistors

Data Acquisition

3 Canon 40D cameras
External trigger for sync

Contact probe

PhigetInterfaceKit with
force sensing resistors



Data Acquisition

3 Canon 40D cameras
External trigger for sync

Contact probe

PhigetInterfaceKit with
force sensing resistors

Force 
Displacement

Overview

SynthesisAcquisition

Material

Linear
Material

Analysis

Parameter
Fitting

Nonlinear
Interpolation

FEM
Simulation



Material Representation

Stress‐Strain relationship 1D

– Strain

– Stress

Strain in 3D

Cauchy’s linear strain tensor

Material Representation



Strain in 3D

Cauchy’s linear strain tensor

Stress in 3D

Hooke’s Law

Material Representation

Material Representation

Linear isotropic material

– Young’s Modulus 

– Poisson’s ratio

Young’s Modulus

F



Parameter Fitting

• Levenberg‐Marquardt
• Typical fitting time per example deformation ~20min
• Details in the paper…

Fitted Parameters

F

color coded
Young’s Modulus

F

vary both as a function
of location and local strain
vary both as a function

of location and local strain



Force 
Displacement

Overview

SynthesisAcquisition

Material

Linear
Strain ‐Material

Analysis

Parameter
Fitting

Nonlinear
Interpolation

FEM
Simulation

Strain‐Space Interpolation

P
ar
am

et
e
r 
Fi
tt
in
g



Strain‐Space Interpolation

local

per element

…

Strain‐Space Interpolation

per element

biharmonic RBF kernel
[Carr et al. 01]

(solve MM system per element) …



Force 
Displacement

Overview

SynthesisAcquisition

Material

Linear
Material

Analysis

Parameter
Fitting

Nonlinear
Interpolation

FEM
Simulation

Elastostatic FEM Simulation

Incremental loading

Material 
interpolation

Elastostatic FEM

M
at
e
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al



Elastostatic FEM Simulation

Incremental loading

Material 
interpolation

Elastostatic FEM

x

M
at
e
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xx

Results – Validation

48 deformation examples – 1,805 elements



Results

12 deformation examples – 3,240 elements

Results ‐ Comparison

measured ours
linear 
co‐rotational



Results ‐ Face Deformation

• Simulation domain 8,261 elements 
• Sliding contact between tissue and skull
• Smooth embedding based on MLS

Summary

Data‐driven method for soft tissue simulation

• Novel representation
– Non‐linear deformations

– Heterogeneity

• Simple data acquisition

• Efficient deformation synthesis

Material



5 Data-Driven Modeling of Nonlinear Elasticity in Cloth
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M ti tiMotivation

[Baraff et al.] [www.optitex.com]

[www.fstructures.com]

Cloth simulation is of great interest in computer graphics, 
the textile industry and mechanical engineeringthe textile industry, and mechanical engineering

M ti tiMotivation

[Particle System -- Breen]

[StVK – Volino et al.]

[Discrete Shells – Grinspun et al.]

St t f th t l th d l lState-of-the-art cloth models rely on
parameters, but parameters tuning is
a tedious trial and error taska tedious trial-and-error task



M ti tiMotivation

Force 1

F 2Force 2

Force 3

Force 4

rc
e 

(N
)

Fo
r

stretch (%)

Real cloth exhibits strongly nonlinear
behavior, including large hysteresis between
loading and unloading cycles

A t ti P t T iAutomatic Parameter Tuning

1. Capture real cloth behavior.

2. Estimate parameters automatically.

3. Evaluate performance of different
cloth models Spring St VKcloth models.

Soft Constraints

Spring St. VK

Soft Constraints



Cl i A hClassic Approaches

FORCE-BASED • Force vs displacement measurements
MEASUREMENTS

• Force vs displacement measurements
• Isolate individual deformation modes
• Uniform deformation

Kawabata’80
Volino’09
…

DYNAMIC CAPTURED
VIDEOS

• Reduced controlled conditions
• Impossible to separate internal and 

external parameters

Bhat’03
Kunitomo’10
Stoll’10 external parameters

• No force information is available
Stoll 10
…

A h 1 [Mi l t l 2012]Approach 1 [Miguel et al. 2012]

MODEL FITTINGMEASUREMENT VALIDATION

• Capture system
• Detailed 3D geometry
• Force measurements

• Fitting method
• Estimated parameters

• Insight on evaluated
models



M t H d O iMeasurement: Hardware Overview

4 Cameras

Clips, Pulleys
and Wires

Cloth
Sample

Linear 
actuators

Force sensors

M t M d D tMeasurement: Measured Data
Force magnitudes 

and directions
Cloth configuration

(3D mesh)



M t E i tMeasurement: Experiments

WARP-STRETCH WEFT-STRETCH SHEAR CORNER-PULL

WARP-BEND WEFT-BEND COMPLEX SHEARWARP-BEND WEFT-BEND COMPLEX SHEAR

5 experiments with near-isolated
t i d f d t fitti

2 experiments with complex
t i d f lid tistrain, used for data fitting strain, used for validation

M d l Fitti Cl th M d lModel Fitting: Cloth Models
LINEARLINEAR

NON-LINEAR

Energy is defined as the stress-strain product.  The left block derives 
the force for each deformation mode for a linear, separable model., p
On the right, the model is extended to account for nonlinear
elasticity, by interpolating stiffness from control point values.



M d l Fitti Cl th M d lModel Fitting: Cloth Models

MEMBRANE
• Spring

BENDING
• Springs• Spring

• Volino’09

• Baraff & Witkin’98

Springs

• Grinspun’03

• Bridson’03Baraff & Witkin 98

•… • Bergou’06

• Garg’07

• …

Many popular models can be written in this fashion and some ofMany popular models can be written in this fashion, and some of 
them are picked to define three example membrane-bending models:

Soft Constraints

Baraff & Witkin

St. VK

Diagonalized St. VK

Spring
Spring Membrane Baraff & Witkin

Discrete Shells Bending
Diagonalized St. VK

Discrete Shells BendingSpring Bending

M d l Fitti O ti i ti LModel Fitting: Optimization Loop
Input framesp

Simulated frames

Quasi-static
solver

Obj. 
Function

Position Boundary 
Conditions

Model Parameters

Optimization



M d l Fitti I t l FittiModel Fitting: Incremental Fitting
WARP STRETCH

WARP-BEND
WARP-STRETCH

SHEAR DIAG-BEND

WEFT-STRETCH WEFT-BEND

M d l Fitti C t l P i t I tiModel Fitting: Control Point Insertion

K K K K

Valid strain range



V lid ti R l Cl th S lValidation: Real Cloth Samples
/Cotton satin

• Very stiff in stretch

Rayon/spandex knit

• Isotropic
• Compliant in bending • Compliant in stretch and bending

Cotton denim Wool/cotton blend

• Stiff and quite isotropic in stretch
• Extremely anisotropic in bending

• Anisotropic in stretch and
bending

V lid ti St t hValidation: Stretch
WARP STRETCHWARP-STRETCH

A plot compares measured force-displacement in 
l di l di l t i l t d floading-unloading cycles to simulated force



V lid ti St t h
Soft Constraints St.VK Spring

Validation: Stretch

Cotton satinCotton satin

Rayon/spandex knit

Cotton denim

Wool/cotton blend/

V lid ti ShValidation: Shear
SHEAR

hi i h l h ff iThis time the plot shows aggregate torque vs. effective
shear angle



V lid ti Sh
SpringSt.VKSoft Constraints

Validation: Shear

Cotton satinCotton satin

Rayon/spandex knit

Cotton denim

Wool/cotton blend/

V lid ti ShValidation: Shear
WARP-BENDING

h l d d i l d l h filThe plot compares measured and simulated cloth profiles



V lid ti B d
Soft Constraints St.VK Spring

Validation: Bend

Cotton satinCotton satin

Rayon/spandex knit

Cotton denim

Wool/cotton blend/

V lid ti C P llValidation: Corner-Pull
CORNER-PULL

Validation under experiments not used for fitting



V lid ti C P ll
SpringSoft Constraints St.VK

Validation: Corner-Pull
SpringSoft Constraints St.VK

Cotton satinCotton satin

Rayon/spandex knit

Cotton denim

Wool/cotton blend/

Li it ti
H i

Limitations
Hysteresis Poisson Cross-Modal Stiffening

Compression di iCompression Bending Dynamics



A h 2 [W t l 2011]Approach 2 [Wang et al. 2011]

DATA CAPTUREELASTIC MODEL
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El ti M d l Li M d lElastic Model: Linear Model

• A full linear model
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El ti M d l O th t i M d lElastic Model: Orthotropic Model

• Orthotropic model: linear, anisotropic, symmetric
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El ti M d l N li M d lElastic Model: Nonlinear Model

⎡ ⎤
• Nonlinear orthotropic model
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El ti M d l B diElastic Model: Bending

• Stiffness K
d ( )– Edge orientation (anisotropic) 

– Bending angle (nonlinear)g g ( )

D t C t R t C ditiData Capture: Rest Conditions

40cm×40cmCloth Sample
(40cm×40cm)

fixed

( )



D t C t D f tiData Capture: Deformation

40cm×40cm

D t C t AData Capture: Accuracy

Average error:
2 58mm2.58mm



D t C t B diData Capture: Bending

simulation

featuresfeatures

Fitti & R lt O ti i tiFitting & Results: Optimization

simulatorcapture device

argmin − Simulated FramesSimulated FramesSimulated Shapes

stiffness 
parameters



Fitti & R lt N li M d lFitting & Results: Nonlinear Model

stiffness
Cuustiffness

`

`

Linear Model Nonlinear Model

Fitti & R lt D t tFitting & Results: Dataset

http://graphics.berkeley.edu/papers/Wang-DDE-2011-08/index.html



Fitti & R lt C iFitting & Results: Comparison



6 Animation of Faces with Data-Driven Wrinkles
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Goals

High‐fidelity face model

• Realistic wrinkle formation

• Intuitive and easy to control

• Interactive performance

• Re‐use available data

Hybrid Face Model



Related Work

• Blend shapes

– [Parke 72, 74]
– Automatic blending 

[Pighin 98]
– Automatic  segmentation 

[Joshi 03]
– Morphable models 

[Blanz and Vetter 99]

[Parke 72]

Related Work

• Blend shapes

• Anatomical models

– [Koch et al. 96]
– [Essa et al. 96]
– [Sifakis et al. 05]

[Sifakis et al. 05]



Related Work

• Blend shapes

• Anatomical models

• Multi‐Scale Capture of Facial Geometry 
and Motion

– [Bickel et al. 07]
– [Ma et al. 07]
– [Beeler et al. 11]

[Ma et al. 07]

Hybrid Model

Rest Pose Handle Vertices

Feature Graph Examples

Large‐Scale
Linear Deformation

Fine‐Scale
Pose Space Deformation



Overview

Rest Pose Handle Vertices

Feature Graph Examples

Large‐Scale
Linear Deformation

Fine‐Scale
Pose Space Deformation

Large‐Scale Deformation

Linear
Thin‐Shell
Energy 

Minimization

stretching bending

[Botsch et al. 04; 
Bickel et al. 07]



Large‐Scale Deformation

Linear
Thin‐Shell
Energy 

Minimization
[Botsch et al. 04; 
Bickel et al. 07]

Large‐Scale Deformation



Overview

Rest Pose Handle Vertices

Feature Graph Examples

Large‐Scale
Linear Deformation

Fine‐Scale
Pose Space Deformation

Fine‐Scale Deformation

Large‐Scale
Deformation

d =

+

Example Poses

=



Fine‐Scale Deformation

• Correlation wrinkling and lateral compression [Wu et al. 96]

• Feature graph defines F‐dimensional feature vector
݂ ൌ ଵ݂, … , ி݂

்

Fine‐Scale Deformation

• Pose‐Space Deformation [Lewis et al. 00]

• Mapping facial pose to 3D fine‐scale displacements

biharmonic RBF kernel



Fine‐Scale Deformation

Problem:  Exponential growth of example poses
Ex
am

p
le
 p
o
se
s

PSD

WPSD

Fine‐Scale Deformation

• Weighted Pose‐Space Deformation



Fine‐Scale Deformation

Fitting RBFs

Large training set T

Compact basis P

Least‐squares fit
(solve PP system per vertex)

Fine‐Scale Deformation



Results

Goals

High‐fidelity face model

• Realistic wrinkle formation

• Intuitive and easy to control

• Interactive performance

• Re‐use available data



Performance

• NVidia 8800 GTX, CUDA

• 530k vertices

• 6 example poses

• 89 handle vertices, 
243 feature edges

Pipeline‐Step Animation

Large‐Scale 9 ms

Small‐Scale 18 ms

Standard Renderer 4 ms

Skin Renderer
[D’Eon et al. 07]

36 ms

Total
Skin Renderer

15 fps

Total
Standard Renderer

30 fps

Results



Goals

High‐fidelity face model

• Realistic wrinkle formation

• Intuitive and easy to control

• Interactive performance

• Re‐use available data

Overview

Feature Graph Examples

Fine‐Scale
Pose Space Deformation

Rest Pose Handle Vertices

Large‐Scale
Linear Deformation



Overview

Feature Graph Examples

Existing Animation

Fine‐Scale
Pose Space Deformation

Transfer

• Visually enhance face animations

• Re‐use available fine‐scale data

1. Establish correspondence
2. Transfer  feature graph and fine‐

scale data 
3. Evaluate 

 Strain
 Fine‐scale displacements



Results

Results



Results

Summary

Hybrid face animation method

• Constrained deformation approach
– Driven by handles

• Example‐based deformation approach
– Strain‐based

• Benefits
‐ Complex wrinkling effects

‐ Intuitive and easy control

‐ Interactive performance

‐ Transfer of facial details

Fine‐ScaleLarge‐Scale



7 Clothing Animation with Wrinkle Synthesis from Examples
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Clothing Classificationg
Skin Swimsuit Shirt Skirt Cape

Ti ht LTight Loose

Data-Driven Cloth Realism?
Method Simulation

For example:

Efficiency?
Generality? For example:p

[Allen et al. 2002]
[Mohr and Gleicher 2003]

y p
[Baraff and Witkin 1998]

[Bridson et al. 2002]

Principle I: Poses decide cloth wrinkles.p

Fine Wrinkles

Clothing 
Animation

Coarse Dynamics
Animation



Principle II: Wrinkles are similar.p

Fine 
Wrinkles

Wrinkle Synthesize
WrinklesDatabase

Principle III: Wrinkles are affected locally.

Elbow KneeShoulderElbow
Chest

KneeHip

Wrinkle Database 



System Pipeliney p

Synthesize
Merge

Elbow
Merge

Shoulder

… …
Chest

Coarse Final 
Simulation MeshDetail Transfer

The Database

Elbow

Shoulder

…

Chest



Database Construction

14 1412612614 14126126

# Samples
45

# Samples

Shirt S t J i t ( )
90 90

S Separate Joint (our)
14+126+126+14+45=325
90+90+11+11=20290+90+11+11=202

Combined Joint (bad)

11 11
l

Combined Joint (bad)
14×126×126×14×45=140M
90×90×11×11=1M

# Samples

P tPants

Database Construction

b d h• Create a body mesh sequence.

• Simulate cloth with body motion, y ,
using a large damping force.

• Pick some frames as joint samples• Pick some frames as joint samples.

• Assign each sample with the 
corresponding cloth mesh.

(48 to 72 hours in total )(48 to 72 hours in total.)



System Pipeliney p

SynthesizeElbow

Shoulder
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Wrinkle Synthesis Limitationsy
1. No global dynamics 2. Collisions
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SummarySu a y

d l h h id li i• Focused on common clothes, has wide applications
– Games

i f ffli h i l i l i– Fast preview for offline physical simulation

C bi h i i h h d b• Combines physics with the database
– Greatly reduces the computational cost

P id li i l– Provides realistic results.

• Reduces a whole pose space to local pose spaces



8 Outlook

This course focuses on three applications of data-driven methods in computer graphics: cloth, tissue and face anima-
tion. Data-driven methods have also been successfully applied to character motion, and we expect that data-driven
approaches will become popular in other areas of simulation in computer graphics too. To maximize their applica-
bility, it will be crucial to understand which processes and properties can be modeled accurately with data-driven
approaches. Effort should be devoted to developing general algorithmic and methodological procedures, together
with a clear understanding of their limitations.

One of the major difficulties in data-driven methods is to find suitable descriptions of the simulated processes.
Those descriptions have an impact on the smoothness and fairness of the output functions, which in turn affect
the robustness and accuracy of interpolation and optimization methods. Multi-scale process decompositions appear
particularly interesting in situations where fine-scale effects dominate the computational cost and the modeling
complexity.

To conclude, the application of data-driven simulation methods in the computer graphics industry will depend largely
on the access to accurate data. To this end, progress must be made along two paths. One is the creation of data
libraries, both geometric and mechanical, that can be used by a large set of developers. The other is a combined
progress of algorithms and capture systems, to enable fast and cheap synthesis of data-driven models.
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BICKEL, B., BÄCHER, M., OTADUY, M. A., MATUSIK, W., PFISTER, H., AND GROSS, M. 2009. Capture and
modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1–89:9.
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